Integrating fishermen knowledge and scientific analysis to assess changes in fish diversity and food web structure

2014 ◽  
Vol 102 ◽  
pp. 258-268 ◽  
Author(s):  
Roberto Rosa ◽  
Adriana R. Carvalho ◽  
Ronaldo Angelini
2018 ◽  
Vol 69 (9) ◽  
pp. 1453 ◽  
Author(s):  
Nehir Kaymak ◽  
Kirk O. Winemiller ◽  
Senol Akin ◽  
Zekeriya Altuner ◽  
Fatih Polat ◽  
...  

Dams interrupt the longitudinal connectivity of rivers by impeding the movement of water, sediments and organisms, which, in turn, could affect aquatic biodiversity and food web ecology. Using stable isotope analysis, we examined spatiotemporal variation in food web structure at four sites in the upper Yeşilırmak River, Anatolia Peninsula, Turkey, in relation to environmental parameters and a dam. It was apparent that the dam created discontinuity in the longitudinal fluvial gradient of fish species richness, with more species observed at upstream sites. Fish assemblages from different sites and seasons occupied distinct areas of isotopic space. Isotopic niche space, trophic diversity, variation in δ13C of basal resources and assemblage redundancy were all higher for the fish assemblage at the site downstream from the dam compared with the site above the dam, a possible indication of greater interspecific dietary variation. Food chain length (the range in δ15N) was lower at the downstream site, possibly resulting from a greater tendency towards omnivory. The findings strongly suggest that the dam affects not only environmental conditions and fish diversity, but also trophic ecology. The results of the present study emphasise the need for research to assess potential effects of new dams in Anatolia on aquatic communities and ecosystem dynamics in rivers.


2017 ◽  
Vol 27 (4) ◽  
pp. 1190-1198 ◽  
Author(s):  
Joshua J. Thoresen ◽  
David Towns ◽  
Sebastian Leuzinger ◽  
Mel Durrett ◽  
Christa P. H. Mulder ◽  
...  

2020 ◽  
Vol 106 (2) ◽  
pp. 69-85
Author(s):  
Matthew J. Young ◽  
Frederick Feyrer ◽  
Paul R. Stumpner ◽  
Veronica Larwood ◽  
Oliver Patton ◽  
...  

2009 ◽  
Vol 364 (1524) ◽  
pp. 1789-1801 ◽  
Author(s):  
Kevin Shear McCann ◽  
Neil Rooney

Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.


Nature ◽  
10.1038/47023 ◽  
1999 ◽  
Vol 402 (6757) ◽  
pp. 69-72 ◽  
Author(s):  
Owen L. Petchey ◽  
P. Timon McPhearson ◽  
Timothy M. Casey ◽  
Peter J. Morin

Sign in / Sign up

Export Citation Format

Share Document