scholarly journals Reconstruction of quasiprobability distribution functions of the cavity field considering field and atomic decays

2017 ◽  
Vol 400 ◽  
pp. 69-73 ◽  
Author(s):  
N. Yazdanpanah ◽  
M.K. Tavassoly ◽  
R. Juárez-Amaro ◽  
H.M. Moya-Cessa
2003 ◽  
Vol 17 (30) ◽  
pp. 5795-5810 ◽  
Author(s):  
R. A. ZAIT

We study the dynamics and quantum characteristics of a single two-level atom interacting with a single mode cavity field undergoing a multi-photon processes in the presence of a nonlinear Kerr-like medium. The wavefunctions of the multi-photon system are obtained when the atom starts in the excited and in the ground state. The atomic inversion, the squeezing of the radiation field and the quasiprobability distribution Q-function of the field are discussed. Numerical results for these characteristics are presented when the atom starts in the excited state and the field mode in a coherent state. The influence of the presence and absence of the number operator and the Kerr medium for the one- and two-photon processes on the evolution of these characteristics are analyzed.


2006 ◽  
Vol 39 (31) ◽  
pp. 9881-9890 ◽  
Author(s):  
M Ruzzi ◽  
M A Marchiolli ◽  
E C da Silva ◽  
D Galetti

2001 ◽  
Vol 15 (01) ◽  
pp. 75-100 ◽  
Author(s):  
FAISAL A. A. EL-ORANY ◽  
M. SEBAWE ABDALLA ◽  
A-.S. F. OBADA ◽  
G. M. ABD AL-KADER

In this communication we investigate the action of a single-mode squeeze operator on the statistical behaviour of different binomial states. For the resulting states (squeezed generalized binomial states) normalized second-order correlation function, quasiprobability distribution functions and the distribution function P(x) associated with the quadrature x are studied both analytically and numerically. Furthermore, the quadrature phase distribution as well as the phase distribution in the framework of Pegg–Barnett formalism are discussed.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 344 ◽  
Author(s):  
Jorge Anaya-Contreras ◽  
Arturo Zúñiga-Segundo ◽  
Héctor Moya-Cessa

We show, in a formal way, how a class of complex quasiprobability distribution functions may be introduced by using the fractional Fourier transform. This leads to the Fresnel transform of a characteristic function instead of the usual Fourier transform. We end the manuscript by showing a way in which the distribution we are introducing may be reconstructed by using atom-field interactions.


Author(s):  
A.-S. F. Obada ◽  
M. M. A. Ahmed ◽  
Hoda A. Ali ◽  
Somia Abd-Elnabi ◽  
S. Sanad

AbstractIn this paper, we consider a special type of maximally entangled states namely by entangled SU(1,1) semi coherent states by using SU(1,1) semi coherent states(SU(1,1) Semi CS). The entanglement characteristics of these entangled states are studied by evaluating the concurrence.We investigate some of their nonclassical properties,especially probability distribution function,second-order correlation function and quadrature squeezing . Further, the quasiprobability distribution functions (Q-functions) is discussed.


Sign in / Sign up

Export Citation Format

Share Document