field mode
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 50)

H-INDEX

18
(FIVE YEARS 5)

Author(s):  
Sanaa Seddik ◽  
Khadija El Anouz ◽  
Abderrahim El Allati

In this paper, we propose a model to describe the geometry of quantum correlations and entanglement through their distinct physical significance in quantum information processing and modern communications. However, geometric discord, using trace, Hilbert–Schmidt distances, and entanglement of formation, is engineered to be a well-defined non-classical correlation measure of an atomic field system. It consists of employing Jaynes–Cummings model to study the interaction between an excited atom at two levels and a single electromagnetic field mode inside an electrodynamic cavity in two cases, namely resonance and non-resonance. In fact, the dynamics of these measures depends decisively on the atom-field initial parameters where, importantly, the field parameters can be specified as control settings to implement an optimal teleportation protocol. The obtained results reveal that the behaviors of teleported geometric quantum discord and entanglement are similar to those displayed for maximum fidelity in terms of fully entanglement fraction. Therefore, since fidelity always exceeds the classical limit, one can design a quantum teleportation scheme with robust fidelity superior to any conventional communication protocol.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2188
Author(s):  
Sayed Abdel-Khalek ◽  
Eied M. Khalil ◽  
Hammad Alotaibi ◽  
Sayed M. Abo-Dahab ◽  
Emad E. Mahmoud ◽  
...  

The present research paper considers a three-level atom (3LA) that interacts with a field mode primarily in a photon-added coherent state of Morse potential (PACSMP). The dynamics of entanglement, the photon statistics, and the quantum Fisher information are investigated. The statistics of field photons are discussed by evaluating the Mandel parameter. We check the influence of the energy dissipation and intensity-dependent function. Finally, we detect the relationship between the entanglement, the field’s nonclassical characteristics, and atomic quantum Fisher information throughout the evolution of time. The findings illustrate the important role of the number of added photons and CSMP in affecting the entanglement’s time evolution, the quantum Fisher information, and the Mandel parameter. Based on the obtained results, we reached significant physical phenomena, including the sudden birth and death of the nonlocal correlation between atom-Morse potential field structures.


2021 ◽  
pp. 2150188
Author(s):  
N. H. Abd El-Wahab ◽  
R. A. Zait

We consider a four-level double V-type atom with two closely-separated top levels and two closely-separated lower levels interacting with a single mode field via multi-photon processes and in the presence of Kerr medium. We show that this atomic system possesses supersymmetric structure and construct its supersymmetric generators. We diagonalize the Hamiltonian of this system using supersymmetric unitary transformation and obtain the corresponding eigenstates and eigenvalues. The atom–field wave functions are obtained when the atom and the field mode are initially in two different cases. The evolution of both the quasi-probability distribution Q-function and the Mandel Q-parameter of the field are studied when the input field is in a coherent state. The influence of the Kerr medium and the detuning parameters on the behavior of these quantum effects is analyzed. The results show that they play a prominent role on the Poissonian statistics of the field. Also, the Kerr medium changes the behavior of the quasi-probability distribution Q-function. We end with discussion and conclusions.


Author(s):  
Fabian Göttgens ◽  
Sebastian Kamann ◽  
Holger Baumgardt ◽  
Stefan Dreizler ◽  
Benjamin Giesers ◽  
...  

Abstract We use spectra observed with the integral-field spectrograph MUSE to reveal the central kinematics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Using observations obtained with the recently commissioned narrow-field mode of MUSE, we are able to analyse 932 stars in the central 7.5 arcsec by 7.5 arcsec of the cluster for which no useful spectra previously existed. Mean radial velocities of individual stars derived from the spectra are compared to predictions from axisymmetric Jeans models, resulting in radial profiles of the velocity dispersion, the rotation amplitude, and the mass-to-light ratio. The new data allow us to search for an intermediate-mass black hole (IMBH) in the centre of the cluster. Our Jeans model finds two similarly probable solutions around different dynamical cluster centres. The first solution has a centre close to the photometric estimates available in the literature and does not need an IMBH to fit the observed kinematics. The second solution contains a location of the cluster centre that is offset by about 2.4 arcsec from the first one and it needs an IMBH mass of $4600^{+1700}_{-1400}~\text{M}_\odot {}$. N-body models support the existence of an IMBH in this cluster with a mass of up to 6000 M⊙ in this cluster, although models without an IMBH provide a better fit to the observed surface brightness profile. They further indicate that the cluster has lost nearly all stellar-mass black holes. We further discuss the detection of two potential high-velocity stars with radial velocities of 80 to 90 km s−1 relative to the cluster mean.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 525
Author(s):  
Harshit Verma ◽  
Magdalena Zych ◽  
Fabio Costa

Quantum interference of "clocks", namely of particles with time-evolving internal degrees of freedom (DOFs), is a promising avenue to test genuine general relativistic effects in quantum systems. The clock acquires which path information while experiencing different proper times on traversing the arms of the interferometer, leading to a drop in its path visibility. We consider scenarios where the clock is subject to environmental noise as it transits through the interferometer. In particular, we develop a generalized formulation of interferometric visibility affected by noise on the clock. We find that, for small noise and small proper time difference between the arms, the noise further reduces the visibility, while in more general situations it can either increase or reduce the visibility. As an example, we investigate the effect of a thermal environment constituted by a single field mode and show that the visibility drops further as the temperature is increased. Additionally, by considering noise models based on standard quantum channels, we show that interferometric visibility can increase or decrease depending on the type of noise and also the time scale and transition probabilities. The quantification of the effect of noise on the visibility – particularly in the case of a thermal environment paves the way for a better estimate on the expected outcome in an actual experiment.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4862
Author(s):  
Ngoc Van Trinh ◽  
Younghyeon Kim ◽  
Hongjip Kim ◽  
Sangseok Yu

In a methanol-reforming system, because the mixture of methanol and water must be evaporated before reaching the reforming reaction zone, having an appropriate evaporator design is a fundamental requirement for completing the reforming reaction. This study investigates the effect of the evaporator design for the stable reforming of methanol–water mixtures. Four types of evaporator are compared at the same heat duty of the methanol-reforming system. The four evaporators are planar heat exchangers containing a microchannel structure, cylindrical shell-and-tube evaporators, zirconia balls for internal evaporation, and combinations of cylindrical shell-tubes and zirconia balls. The results show that the evaporator configuration is critical in performing stable reform reactions, especially for the flow-field mode of the evaporator. Additionally, the combination of both internal and external evaporation methods generates the highest performance for the methanol-reforming system, with the methanol conversion reaching almost 98%.


2021 ◽  
Author(s):  
Russell Rundle ◽  
Mark J Everitt

Abstract Here we consider an informationally complete Wigner function approach to look at multiple atoms (qubits) coupled to a field mode. We consider the Tavis-Cummings interaction between a single field mode with two qubits and then with five


2021 ◽  
pp. 1-16
Author(s):  
John W. Goodge ◽  
Jeffrey P. Severinghaus ◽  
Jay Johnson ◽  
Delia Tosi ◽  
Ryan Bay

Abstract Rapid Access Ice Drill is a new drilling technology capable of quickly accessing the glacial bed of Antarctic ice sheets, retrieving ice core and rock core samples, and providing boreholes for downhole logging of physical properties. Scientific goals include searching for old ice near the glacial bed and sampling subglacial bedrock. During field trials near McMurdo Station on a piedmont glacier at Minna Bluff in the 2019–20 austral summer, we successfully completed a ‘top-to-bottom’ operational sequence in three boreholes by (1) augering through firn, (2) creating a borehole packer seal in non-porous ice, (3) establishing fluid circulation, (4) quickly drilling a borehole in ice at penetration rates up to 1.2 m min−1, (5) acquiring a short ice core at depth, (6) penetrating the glacial bed at a depth of ~677 m, (7) recovering a 3.2 m core of ice, basal till and subglacial bedrock, (8) optically logging the borehole on wireline, (9) testing hydrofracture potential by overpressuring the borehole fluid and (10) operating in an environmentally benign yet rapid field mode. Minna Bluff testing, therefore, demonstrates the effectiveness of this integrated system to drill rapidly through thick ice and penetrate across the glacial bed to take cores of bedrock.


Sign in / Sign up

Export Citation Format

Share Document