scholarly journals Green wavelength femtosecond laser ablated copper surface

2021 ◽  
pp. 127875
Author(s):  
Yi-Hsien Liu ◽  
Chung-Wei Cheng
2021 ◽  
Author(s):  
Yi-Hsien Liu ◽  
Chung-Wei Cheng

Abstract During green wavelength femtosecond laser ablation, d-band electrons are excited to become free and to participate in the absorption process. The increased electron temperature also induces the density of state shift and causes the gap between the d-band and the Fermi level to expand. The d-band electron transition effect during the laser ablation process causes nonlinear absorption, therefore, it should always be considered during simulations of laser-copper interaction.This study used a single femtosecond laser pulse with a wavelength of 515 nm and a pulse duration of 300 fs to ablate copper with fluence 0.7 - 63 J/cm2. The experimental results were compared with the theoretical results, where a modified Drude-critical point model was adopted to simulate the ablation depth. The modified model considered the electron transition effect and a two-temperature model that assumed both the linear and nonlinear absorption effect. Comparison of the experimental and simulated results revealed that the simulated ablation depth obtained using the nonlinear absorption model was consistent with the experimental results.


2020 ◽  
Vol 22 (10) ◽  
pp. 1901310 ◽  
Author(s):  
Kaiwen Ding ◽  
Ming Li ◽  
Cong Wang ◽  
Nai Lin ◽  
Haoran Wang ◽  
...  

2019 ◽  
Vol 119 ◽  
pp. 105574 ◽  
Author(s):  
Serguei P. Murzin ◽  
Gerhard Liedl ◽  
Robert Pospichal

2020 ◽  
Vol 92 (2) ◽  
pp. 20701
Author(s):  
Bo Li ◽  
Xiaofeng Li ◽  
Zhifeng Zhu ◽  
Qiang Gao

Laser-induced breakdown spectroscopy (LIBS) is a powerful technique for quantitative diagnostics of gases. The spatial resolution of LIBS, however, is limited by the volume of plasma. Here femtosecond-nanosecond dual-pulsed LIBS was demonstrated. Using this method, the breakdown threshold was reduced by 80%, and decay of continuous radiation was shortened. In addition, the volume of the plasma was shrunk by 85% and hence, the spatial resolution of LIBS was significantly improved.


2006 ◽  
Vol 223 (S 1) ◽  
Author(s):  
MP Holzer ◽  
TM Rabsilber ◽  
GU Auffarth

2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Sign in / Sign up

Export Citation Format

Share Document