Real-time width control of molten pool in laser engineered net shaping based on dual-color image

2020 ◽  
Vol 123 ◽  
pp. 105925 ◽  
Author(s):  
Qi Yang ◽  
Zijun Yuan ◽  
Xinlei Zhi ◽  
Zhaohua Yan ◽  
Hucheng Tian ◽  
...  
Author(s):  
Wenda Tan ◽  
Xuxiao Li

A multi-scale modeling framework is developed in this work to simulate the transport phenomena and grain growth in Laser Engineered Net Shaping (LENS) process of austenitic stainless steel AISI 316. A three-dimensional (3D) model is included to simulate the transient molten pool geometry and heat/mass transfer on a macro-scale; and a 3D meso-scale model based on the Cellular Automata method is included to predict the grain growth during molten pool solidification. The predicted grain structure is found to be consistent with the experimental results and reveals that the grain structure is highly dependent on the molten pool geometry.


2017 ◽  
Vol 39 (2) ◽  
pp. 175-184
Author(s):  
Z. Zheng ◽  
P. Zhang ◽  
G. He ◽  
K. Liao ◽  
Z. Wang ◽  
...  

1998 ◽  
Author(s):  
Paul L. McCarley ◽  
Mark A. Massie ◽  
Christopher R. Baxter ◽  
Buu L. Huynh

Author(s):  
Thiago Azevedo ◽  
Italo Leite de Camargo ◽  
Johan sebastian Grass Nunez ◽  
Fábio Mariani ◽  
Reginaldo Coelho ◽  
...  

Author(s):  
R Sarrafi ◽  
D Lin ◽  
R Kovacevic

Online observation is expected to provide a better understanding of the cathodic cleaning of oxides from the molten pool during variable-polarity gas tungsten arc welding (VP GTAW) of aluminium alloys. In this paper, a machine-vision system with appropriate illumination and filtering is used to monitor in real time the effect of different process parameters on the cleaning of oxides from the molten pool during VP GTAW of Al 6061. Based on the observations, the process conditions under which a clean molten pool can be achieved are determined. In addition, the control of the welding process to maintain the consistency of cathodic cleaning is discussed. The results showed that in order to have an oxide-free molten pool, the solid surface in front of the molten pool should be cleaned from oxides by the electric arc. The choice of process parameters to satisfy this condition has been discussed. It was found that the percentage of direct current electrode positive (DCEP) polarity in the cycle of current has the highest impact on the cathodic cleaning, with the arc current having less influence, and the welding speed showing the least effect. Furthermore, in order to keep the consistency of oxide cleaning, process parameters should be set or controlled to maintain the cleaned zone larger than the molten pool.


Sign in / Sign up

Export Citation Format

Share Document