In-situ S and Pb isotope constraints on an evolving hydrothermal system, Tianbaoshan Pb-Zn-(Cu) deposit in South China

2019 ◽  
Vol 115 ◽  
pp. 103177 ◽  
Author(s):  
Shu-Cheng Tan ◽  
Jia-Xi Zhou ◽  
Mei-Fu Zhou ◽  
Lin Ye
2020 ◽  
Vol 105 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Kai Luo ◽  
Jia-Xi Zhou ◽  
Zhi-Long Huang ◽  
John Caulfield ◽  
Jian-Xin Zhao ◽  
...  

Abstract Unraveling the evolution of Mississippi Valley-type (MVT) hydrothermal system is crucial for understanding ore genesis and exploration. In this paper, we take the Wusihe Pb-Zn deposit in the western Yangtze Block (South China) as a case study, using detailed ore deposit geology, quartz in situ trace elements, and sulfides in situ S-Pb isotopes, to propose a new integrated model for the evolution of MVT hydrothermal system. Four hydrothermal stages were identified in the Wusihe ore district: (I) lamellar pyrite-sphalerite; (II) disseminated, stock-work, and brecciated sphalerite-galena; (III) massive galena, and (IV) veined calcite-bitumen. Within the most representative stage (stage II), Al concentrations in quartz (Q) increase from 8.46–354 ppm (mean 134 ppm) of Q1 to 171–3049 ppm (mean 1062 ppm) of Q2, and then decrease to 3.18–149 ppm (mean 25.4 ppm) of Q3. This trend indicates the role of acid-producing processes that resulted from sulfide precipitation and acid consumption by carbonate buffering. The occurrence of authigenic non-altered K-feldspar provides further evidence that the ore-forming fluids were weakly acidic with pH values of > ~5.5. Moreover, new bulk δ34S values of sulfides (+1.8 to +14.3‰) are overall lower than those previously reported (+7.1 to +20.9‰), implying that in addition to thermochemical sulfate reduction (TSR), bacterial sulfate reduction (BSR) may play an important role in the formation of S2–. In situ δ34S values show a larger range (–4.3 to +26.6‰), and significantly, varies within single grains (up to +12.3‰), suggesting mixing of two isotopically distinct S2– end-members produced by TSR and BSR. The diagenetic and hydrothermal early phase (stage I) sulfides were formed within a nearly closed system of BSR, whereas the formation of late phase (stage II and stage III) sulfides was caused by the input of hydrothermal fluids that promoted TSR. New galena in situ Pb isotopic ratios (206Pb/204Pb = 18.02–18.19, 207Pb/204Pb = 15.66–15.69, and 208Pb/204Pb = 38.14–38.39) suggest that the sources of mineralizing metals in the Wusihe deposit are mainly Proterozoic basement rocks. Hence, a multi-process model (i.e., basin-mountain coupling, fluid mixing, local sulfate reduction, in situ acid-producing and involvement of black shales and carbonate sequences) was responsible for the formation of the Wusihe deposit, while S2– was produced by both TSR and BSR, providing new insights into the evolution of MVT hydrothermal system.


2021 ◽  
Author(s):  
He-Dong Zhao ◽  
Kui-Dong Zhao ◽  
Martin R. Palmer ◽  
Shao-Yong Jiang ◽  
Wei Chen

Abstract Owing to the superimposition of water-rock interaction and external fluids, magmatic source signatures of ore-forming fluids for vein-type tin deposits are commonly overprinted. Hence, there is uncertainty regarding the involvement of magmatic fluids in mineralization processes within these deposits. Tourmaline is a common gangue mineral in Sn deposits and can crystallize from both the magmas and the hydrothermal fluids. We have therefore undertaken an in situ major, trace element, and B isotope study of tourmaline from the Yidong Sn deposit in South China to study the transition from late magmatic to hydrothermal mineralization. Six tourmaline types were identified: (1) early tourmaline (Tur-OE) and (2) late tourmaline (Tur-OL) in tourmaline-quartz orbicules from the Pingying granite, (3) early tourmaline (Tur-DE) and (4) late tourmaline (Tur-DL) in tourmaline-quartz dikelets in the granite, and (5 and 6) core (Tur-OC) and rim (Tur-OR), respectively of hydrothermal tourmaline from the Sn ores. Most of the tourmaline types belong to the alkali group and the schorl-dravite solid-solution series, but the different generations of magmatic and hydrothermal tourmaline are geochemically distinct. Key differences include the hundredfold enrichment of Sn in hydrothermal tourmaline compared to magmatic tourmaline, which indicates that hydrothermal fluids exsolving from the magma were highly enriched in Sn. Tourmaline from the Sn ores is enriched in Fe3+ compared to the hydrothermal tourmaline from the granite and displays trends of decreasing Al and increasing Fe content from core to rim, relating to the exchange vector Fe3+Al–1. This reflects oxidation of fluids during the interaction between hydrothermal fluids and the mafic-ultramafic wall rocks, which led to precipitation of cassiterite. The hydrothermal tourmaline has slightly higher δ11B values than the magmatic tourmaline (which reflects the metasedimentary source for the granite), but overall, the tourmaline from the ores has δ11B values similar to those from the granite, implying a magmatic origin for the ore-forming fluids. We identify five stages in the magmatic-hydrothermal evolution of the system that led to formation of the Sn ores in the Yidong deposit based on chemical and boron isotope changes of tourmaline: (1) emplacement of a B-rich, S-type granitic magma, (2) separation of an immiscible B-rich melt, (3) exsolution of an Sn-rich, reduced hydrothermal fluid, (4) migration of fluid into the country rocks, and (5) acid-consuming reactions with the surrounding mafic-ultramafic rocks and oxidation of the fluid, leading to cassiterite precipitation.


Sign in / Sign up

Export Citation Format

Share Document