Internal solitons in the north-ern South China Sea from in-situ observations

2005 ◽  
Vol 50 (15) ◽  
pp. 1627 ◽  
Author(s):  
Wendong FANG
2021 ◽  
Vol 9 (4) ◽  
pp. 440
Author(s):  
Anzhou Cao ◽  
Zheng Guo ◽  
Yunhe Pan ◽  
Jinbao Song ◽  
Hailun He ◽  
...  

Near-inertial waves (NIWs) are a kind of internal wave, which are usually generated by synoptic wind forcing and play an important role in the oceanic energy budget. However, the lack of in situ observations limits our understanding of NIWs to some extent. Through a comparison with in situ observations, in this study, we first showed that the hybrid coordinate ocean model reanalysis results could reasonably reproduce the typhoon-induced NIWs, and we then adopted these data to investigate the NIWs induced by typhoon Megi in 2010 in the South China Sea (SCS). The results indicate that Megi-induced near-inertial kinetic energy was mainly concentrated in the SCS Basin. In the vertical direction, Megi-induced NIWs could propagate to 1000 m depth. The damping and modal content of Megi-induced NIWs were site-dependent: In the region near Megi’s track, NIWs were dominated by the first three baroclinic modes and damped quickly; whereas in two zones to the west of the Luzon Island and Luzon Strait, the e-folding time of Megi-induced NIWs could be longer than 20 days and higher modes (mode-4 to mode-7) were enhanced several days after the passage of Megi. Possible mechanisms of these phenomena were also explored in this study.


2013 ◽  
Vol 32 (4) ◽  
pp. 41-48 ◽  
Author(s):  
Xiangtao ZHANG ◽  
Liang CHEN ◽  
Qinghua SHE ◽  
Sufang ZHANG ◽  
Peijun QIAO ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Shih-Jen Huang ◽  
Chen-Chih Lin

The satellite-derived aerosol optical depth (AOD) data is used to investigate the distribution of aerosol over the South China Sea (SCS). High correlation coefficients are found between in situ AERONET data and satellite AOD measurements around the SCS with the highest coefficient of 0.9 on the Dongsha Island (i.e., Pratas Island). The empirical orthogonal function (EOF) analysis of AOD over the SCS shows that high AOD is always found around offshore areas of China, Indochina, Sumatra, and Borneo. Besides, spring is the major season of occurring coarse aerosol particles (AOT_C) but fine aerosol particles (AOT_F) occur yearly. The biomass burning is found in Indochina during March and April, and so it is in Sumatra and Borneo from August to October. The results also show that the AOT_F are higher during El Niño events, but higher AOT_C are found in La Niña years.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongdan Deng ◽  
Jianye Ren ◽  
Xiong Pang ◽  
Patrice F. Rey ◽  
Ken R. McClay ◽  
...  

Abstract During extension, the continental lithosphere thins and breaks up, forming either wide or narrow rifts depending on the thermo-mechanical state of the extending lithosphere. Wide continental rifts, which can reach 1,000 km across, have been extensively studied in the North American Cordillera and in the Aegean domain. Yet, the evolutionary process from wide continental rift to continental breakup remains enigmatic due to the lack of seismically resolvable data on the distal passive margin and an absence of onshore natural exposures. Here, we show that Eocene extension across the northern margin of the South China Sea records the transition between a wide continental rift and highly extended (<15 km) continental margin. On the basis of high-resolution seismic data, we document the presence of dome structures, a corrugated and grooved detachment fault, and subdetachment deformation involving crustal-scale nappe folds and magmatic intrusions, which are coeval with supradetachment basins. The thermal and mechanical weakening of this broad continental domain allowed for the formation of metamorphic core complexes, boudinage of the upper crust and exhumation of middle/lower crust through detachment faulting. The structural architecture of the northern South China Sea continental margin is strikingly similar to the broad continental rifts in the North American Cordillera and in the Aegean domain, and reflects the transition from wide rift to continental breakup.


Sign in / Sign up

Export Citation Format

Share Document