Indosinian magmatism and rare metal mineralization in East Tianshan orogenic belt: An example study of Jingerquan Li-Be-Nb-Ta pegmatite deposit

2020 ◽  
Vol 116 ◽  
pp. 103265 ◽  
Author(s):  
Siyu Liu ◽  
Rui Wang ◽  
Heejin Jeon ◽  
Zengqian Hou ◽  
Qingwen Xue ◽  
...  
2014 ◽  
Vol 56 (6) ◽  
pp. 493-512 ◽  
Author(s):  
Chunming Han ◽  
Wenjiao Xiao ◽  
Guochun Zhao ◽  
Benxun Su ◽  
Patrick Asamoah Sakyi ◽  
...  

2014 ◽  
Vol 1010-1012 ◽  
pp. 1413-1416
Author(s):  
Hui Mei Guan ◽  
Zong Xiu Wang ◽  
Wei Feng Xiao

Kanggurtag-Yamansu ductile shear zone is the largest ductile shear zone in the East Tianshan orogenic belt. Deformation characteristics and structural associations of the shear zone suggest that the shear zone was formed by Nearly N-S compression duing late Carboniferous-early Permian. Which confirmed that the Eastern Tianshan mountains along the southern edge of the Turpan Basin were the results of plate interactions in Late Paleozoic.


2022 ◽  
Vol 117 (1) ◽  
pp. 213-236
Author(s):  
Qing-He Yan ◽  
He Wang ◽  
Guoxiang Chi ◽  
Qiang Wang ◽  
Huan Hu ◽  
...  

Abstract The rising demand of strategic metals, especially lithium, necessitates discovery of new resources to meet the global supply chain. Recently, several pegmatite-hosted rare metal (Li-Rb-Be-Nb-Ta) deposits have been discovered in the Western Kunlun orogenic belt, making it a new world-class rare metal resource (estimated ~7 Mt Li2O and 0.16 Mt BeO). Understanding the metallogenesis of this belt is critical to further evaluate the rare metal potential. In this study, columbite-tantalite (coltan) and monazite from rare metal pegmatites and zircon from potential parental granites were collected from five representative rare metal pegmatite deposits in the western, middle, and eastern parts of the Western Kunlun orogenic belt for U-Pb geochronology. The results indicate that despite the distances of the sampling localities in different parts of the Western Kunlun orogenic belt, the ages of pegmatite-hosted rare metal mineralization fall in a narrow range of ca. 208–204 Ma. These rare metal pegmatites are temporally and spatially related to adjacent postorogenic granites emplaced following the closure of the Paleo-Tethys Ocean. The compositional characteristics of K-feldspar, biotite, and muscovite of the granites and pegmatites, along with regional mineralogical and textural zonation of the pegmatites, suggest that the rare metal pegmatites were derived from the volumetrically much more important, highly fractionated granitic intrusions. We propose that, in combination with the data from previous studies, the 218–204 Ma interval represents a newly recognized rare metal metallogenic period linked with granitic intrusions in the Western Kunlun orogenic belt, revealing a 600-km-long late Triassic rare metal pegmatite belt composed of multiple ore fields formed in a similar metallogenic setting. These results emphasize the importance of identifying fertile, Late Triassic to Early Jurassic granitic intrusions for rare metal pegmatite exploration. Furthermore, combined with recent studies on the Songpan-Ganzi rare metal pegmatite belt along the eastern segment of the Paleo-Tethys, this study further highlights the great potential of rare metal resources in this global tectonic zone.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 348
Author(s):  
Minxin You ◽  
Wenyuan Li ◽  
Houmin Li ◽  
Zhaowei Zhang ◽  
Xin Li

The Baixintan mafic-ultramafic intrusion in the Dananhu-Tousuquan arc of the Eastern Tianshan orogenic belt is composed of lherzolite, olivine gabbro, and gabbro. Olivine gabbros contain zircon grains with a U-Pb age of 276.8 ± 1.1 Ma, similar to the ages of other Early Permian Ni-Cu ore-bearing intrusions in the region. The alkaline-silica diagrams, AFM diagram, together with the Ni/Cu-Pd/Ir diagram, indicate that the parental magmas for the Baixintan intrusion were likely high-Mg tholeiitic basaltic in composition. The Cu/Pd ratios, the relatively depleted PGEs and the correlations between them demonstrate that the parental magmas had already experienced sulfide segregation. The lower CaO content in pyroxenites compared with the Duke Island Alaskan-type intrusion and the composition of spinels imply that Baixintan is not an Alaskan-type intrusion. By comparing the Baixintan intrusion with other specific mafic-ultramafic intrusions, this paper considers that the mantle source of the Baixintan intrusion is metasomatized by subduction slab-derived fluids’ components, which gives rise to the negative anomalies of Nb, Ti, and Ta elements. Nb/Yb-Th/Yb, Nb/Yb-TiO2/Yb, and ThN-NbN plots show that the Baixintan intrusion was emplaced in a back-arc spreading environment and may be related to a mantle plume.


Sign in / Sign up

Export Citation Format

Share Document