rare metal mineralization
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 37)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 117 (1) ◽  
pp. 213-236
Author(s):  
Qing-He Yan ◽  
He Wang ◽  
Guoxiang Chi ◽  
Qiang Wang ◽  
Huan Hu ◽  
...  

Abstract The rising demand of strategic metals, especially lithium, necessitates discovery of new resources to meet the global supply chain. Recently, several pegmatite-hosted rare metal (Li-Rb-Be-Nb-Ta) deposits have been discovered in the Western Kunlun orogenic belt, making it a new world-class rare metal resource (estimated ~7 Mt Li2O and 0.16 Mt BeO). Understanding the metallogenesis of this belt is critical to further evaluate the rare metal potential. In this study, columbite-tantalite (coltan) and monazite from rare metal pegmatites and zircon from potential parental granites were collected from five representative rare metal pegmatite deposits in the western, middle, and eastern parts of the Western Kunlun orogenic belt for U-Pb geochronology. The results indicate that despite the distances of the sampling localities in different parts of the Western Kunlun orogenic belt, the ages of pegmatite-hosted rare metal mineralization fall in a narrow range of ca. 208–204 Ma. These rare metal pegmatites are temporally and spatially related to adjacent postorogenic granites emplaced following the closure of the Paleo-Tethys Ocean. The compositional characteristics of K-feldspar, biotite, and muscovite of the granites and pegmatites, along with regional mineralogical and textural zonation of the pegmatites, suggest that the rare metal pegmatites were derived from the volumetrically much more important, highly fractionated granitic intrusions. We propose that, in combination with the data from previous studies, the 218–204 Ma interval represents a newly recognized rare metal metallogenic period linked with granitic intrusions in the Western Kunlun orogenic belt, revealing a 600-km-long late Triassic rare metal pegmatite belt composed of multiple ore fields formed in a similar metallogenic setting. These results emphasize the importance of identifying fertile, Late Triassic to Early Jurassic granitic intrusions for rare metal pegmatite exploration. Furthermore, combined with recent studies on the Songpan-Ganzi rare metal pegmatite belt along the eastern segment of the Paleo-Tethys, this study further highlights the great potential of rare metal resources in this global tectonic zone.


Lithos ◽  
2021 ◽  
pp. 106262
Author(s):  
Yi-Gang Xu ◽  
Ru-Cheng Wang ◽  
Christian Yan Wang ◽  
Robert Linnen ◽  
Fu-Yuan Wu

Author(s):  
A. N. Glukhov ◽  
◽  
M. I. Fomina ◽  
E. E. Kolova ◽  
◽  
...  

The authors briefly characterize the geology and structure of the Shtokovoye ore field attached to the area where the Khurchan-Orotukan zone of tectonic-magmatic activation overlays the structures of the Yana-Kolyma ore-bearing belt. Studied are mineral associations and physicochemical conditions of gold ore bodies, located both in granites and in hornfelsed sedimentary masses. By the main features of its geological structure, ore composition, and physicochemical formation conditions, the Shtokovoye ore field mineralization corresponds to the "depth" group of the gold-rare-metal formation, analogous to the Butarnoye, Basugunyinskiye, Dubach, and Nadezhda occurrences. Its ores are peculiar in the late epithermal mineralization, which is associated with the Okhotsk-Chukotka volcanic belt and overlays the sinaccretional gold-rare-metal mineralization.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 253
Author(s):  
Boris A. D’yachkov ◽  
Ainel Y. Bissatova ◽  
Marina A. Mizernaya ◽  
Sergey V. Khromykh ◽  
Tatiana A. Oitseva ◽  
...  

Replenishment of mineral resources, especially gold and rare metals, is critical for progress in the mining and metallurgical industry of Eastern Kazakhstan. To substantiate the scientific background for mineral exploration, we study microinclusions in minerals from gold and rare-metal fields, as well as trace-element patterns in ores and their hosts that may mark gold and rare-metal mineralization. The revealed compositions of gold-bearing sulfide ores and a number of typical minerals (magnetite, goethite, arsenopyrite, antimonite, gold and silver) and elements (Fe, Mn, Cu, Pb, Zn, As, and Sb) can serve as exploration guides. The analyzed samples contain rare micrometer lead (alamosite, kentrolite, melanotekite, cotunnite) and nickel (bunsenite, trevorite, gersdorffite) phases and accessory cassiterite, wolframite, scheelite, and microlite. The ores bear native gold (with Ag and Pt impurities) amenable to concentration by gravity and flotation methods. Multistage rare-metal pegmatite mineralization can be predicted from the presence of mineral assemblages including cleavelandite, muscovite, lepidolite, spodumene, pollucite, tantalite, microlite, etc. and such elements as Ta, Nb, Be, Li, Cs, and Sn. Pegmatite veins bear diverse Ta minerals (columbite, tantalite-columbite, manganotantalite, ixiolite, and microlite) that accumulated rare metals late during the evolution of the pegmatite magmatic system. The discovered mineralogical and geochemical criteria are useful for exploration purposes.


Author(s):  
Viktor Antipin ◽  
Natalya Sheptyakova ◽  
Larisa Kushch ◽  
Valentina Makrygina

The paper presents new data on mineralogical-geochemical peculiarities of the granites and pegmatites of the Baikal area (Olkhon Region) with implications for the age, generation conditions and geodynamic settings of magmatism. The early Paleozoic granitoids of the Olkhon region are syncollisional formations produced from the gneiss-schistose substratum of the Olkhon metamorphic sequences. Pegmatoid granites and pegmatites of the Region were generated within a wide age range (458-390 Ma) and include different mineralogical and geochemical types. Amongst the Early Paleozoic granitoids, pegmatoid rocks are products of the collisional magmatism evolution and are similar to granites in terms of the mineral composition and distribution patterns of rare and rare earth elements. On the Olkhon island (Baikal lake) the pegmatite of the Tashkiney vein belong to the Be-Nb-Ta mineralogical-geochemical type demonstrating high contents of W, Sn U, Th and very low concentrations of Li and volatile components (F, B). In the Pryolkhonye area, vein pegmatite Iliksin is with Li, Be, Nb, Ta mineralization (lepidolite, vorobyevite, samarskite et al). The studied pegmatite veins are similar both by the profound negative Ba, Sr, Eu, and Zr anomalies. The zircons from the Tashkiney vein (390±5.0 Ma) and of the Iliksin vein (430.1±2.2 Ma, U-Pb isotope LA ICP MS metod) indicate the formation of pegmatite at the late post-collisional stage of magmatism in the Olkhon Region. As regard to mineralogical and geochemical characteristics, vein pegmatites with amazonite (Ainsky and Ulan-Nur) belong to the Li-F type. The tantalum mineralization, represented by microlites and minerals of the columbite-tantalite group is associated with the Ainsky amazonite pegmatite. As opposed to the Early Paleozoic syncollisional granitoids and pegmatoid formations, the middle Paleozoic vein bodies of pegmatites (Tashkiney, Iliksin, Ainsky, Ulan-Nur) are regarded as rare-metal pegmatites. In terms of geochemical characteristics, they are similar to the rare-metal pegmatoid granites and pegmatites of the intra-plate setting widespread in Mongolia and Transbaikalia. The rare-metal mineralization in the Olkhon region may be genetically related to the evolution of Be-Nb-Ta and Li-F types of the post-collisional granites and pegmatites.


Sign in / Sign up

Export Citation Format

Share Document