Improved power efficiency in deep blue phosphorescent organic light-emitting diodes using an acridine core based hole transport material

2012 ◽  
Vol 13 (7) ◽  
pp. 1245-1249 ◽  
Author(s):  
Mounggon Kim ◽  
Jun Yeob Lee
Author(s):  
Bo-Sun Yun ◽  
So-Yoen Kim ◽  
Jin-Hyoung Kim ◽  
Ho-Jin Son ◽  
Sang Ook Kang

The NHC-Ir complexes f-IrSiPr, m-IrSiPr, and m-IrSMe, in which a dibenzothiophene (DBT) moiety is used to increase the emission efficiency for deep-blue phosphorescence, were synthesized and compared with the dibenzofuran...


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 554
Author(s):  
Taeshik Earmme

Solution-processed blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a single emission layer with small-molecule hole-transport materials (HTMs) are demonstrated. Various HTMs have been readily incorporated by solution-processing to enhance hole-transport properties of the polymer-based emission layer. Poly(N-vinylcarbazole) (PVK)-based blue emission layer with iridium(III) bis(4,6-(di-fluorophenyl)pyridinato-N,C2′)picolinate (FIrpic) triplet emitter blended with solution-processed 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) gave luminous efficiency of 21.1 cd/A at a brightness of 6220 cd/m2 with an external quantum efficiency (EQE) of 10.6%. Blue PHOLEDs with solution-incorporated HTMs turned out to be 50% more efficient compared to the reference device without HTMs. The high hole mobility, high triplet energy of HTM, and favorable energy transfer between HTM blended PVK host and FIrpic blue dopant were found to be important factors for achieving high device performance. The results are instructive to design and/or select proper hole-transport materials in solution-processed single emission layer.


1997 ◽  
Vol 488 ◽  
Author(s):  
George M. Daly ◽  
Hideyuki Murata ◽  
Charles D. Merritt ◽  
Zakya H. Kafafi ◽  
Hiroshi Inada ◽  
...  

AbstractEnhanced performance has been observed for plastic molecular organic light emitting diodes (MOLEDs) consisting of two to four organic layers sequentially vacuum vapor deposited onto patterned indium-tin oxide (ITO) on polyester films. For all device structures studied, the performance of plastic diodes is comparable to or better than their analogs on glass substrates. At 100 A/m2, a luminous power efficiency of 4.4 lm/W and external quantum yield of 2.7% are measured for a device structure consisting of two hole transport layers, a doped emitting layer and an electron transport layer on a polyester substrate. The same device made on a silica substrate has a luminous power efficiency of 3.5 lm/W and external quantum yield of 2.3%. Electrical and optical performance for comparable device structures has been characterized by current-voltage-luminance measurements and electroluminescence spectra collected normal to the emitting surface. In addition, an integrating sphere was used to collect the total light emitted and to determine the optical output coupling on glass versus plastic substrates.


2017 ◽  
Vol 9 (43) ◽  
pp. 37883-37887 ◽  
Author(s):  
Hyoungcheol Lim ◽  
Hyun Shin ◽  
Kwon-Hyeon Kim ◽  
Seung-Jun Yoo ◽  
Jin-Suk Huh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document