scholarly journals Sterol, fatty acid, and lignin biomarkers identify the response of organic matter accumulation in Englebright Lake, California (USA) to climate and human impacts

2020 ◽  
Vol 142 ◽  
pp. 103992
Author(s):  
Christina R. Pondell ◽  
Elizabeth A. Canuel
Geoderma ◽  
2021 ◽  
Vol 403 ◽  
pp. 115206
Author(s):  
Guohui Wu ◽  
Zhenhua Chen ◽  
Dongqi Jiang ◽  
Nan Jiang ◽  
Hui Jiang ◽  
...  

2021 ◽  
Author(s):  
Marttiina V. Rantala ◽  
Carsten Meyer-Jacob ◽  
E. Henriikka Kivilä ◽  
Tomi P. Luoto ◽  
Antti. E. K. Ojala ◽  
...  

AbstractGlobal environmental change alters the production, terrestrial export, and photodegradation of organic carbon in northern lakes. Sedimentary biogeochemical records can provide a unique means to understand the nature of these changes over long time scales, where observational data fall short. We deployed in situ experiments on two shallow subarctic lakes with contrasting light regimes; a clear tundra lake and a dark woodland lake, to first investigate the photochemical transformation of carbon and nitrogen elemental (C/N ratio) and isotope (δ13C, δ15N) composition in lake water particulate organic matter (POM) for downcore inferences. We then explored elemental, isotopic, and spectral (inferred lake water total organic carbon [TOC] and sediment chlorophyll a [CHLa]) fingerprints in the lake sediments to trace changes in aquatic production, terrestrial inputs and photodegradation before and after profound human impacts on the global carbon cycle prompted by industrialization. POM pool in both lakes displayed tentative evidence of UV photoreactivity, reflected as increasing δ13C and decreasing C/N values. Through time, the tundra lake sediments traced subtle shifts in primary production, while the woodland lake carried signals of changing terrestrial contributions, indicating shifts in terrestrial carbon export but possibly also photodegradation rates. Under global human impact, both lakes irrespective of their distinct carbon regimes displayed evidence of increased productivity but no conspicuous signs of increased terrestrial influence. Overall, sediment biogeochemistry can integrate a wealth of information on carbon regulation in northern lakes, while our results also point to the importance of considering the entire spectrum of photobiogeochemical fingerprints in sedimentary studies.


2002 ◽  
Vol 59 (10) ◽  
pp. 1606-1615 ◽  
Author(s):  
Martin Kainz ◽  
Marc Lucotte ◽  
Christopher C Parrish

Pathways of methyl mercury (MeHg) accumulation in zooplankton include ingestion of organic matter (OM). We analyzed fatty acid (FA) biomarkers in zooplankton to (i) investigate the effect of allochthonous and autochthonous OM ingestion on MeHg concentrations ([MeHg]) in zooplankton and (ii) examine how algal and bacterial food sources affect MeHg bioaccumulation. We partitioned bulk zooplankton samples (i.e., >500, 202, 100, and 53 μm) from Lake Lusignan (Québec) and measured [MeHg] and [FA] in each fraction. [MeHg] increased with increasing body size and was significantly higher in pelagic than in littoral macrozooplankton (>500 μm). The amount of the ingested terrestrial FA biomarker 24:0 indicated that less than 1% of the total FA in zooplankton was derived from allochthonous sources. More than 60% of the ingested FA originated from algal biomarkers and <10% from bacterial biomarkers. Relative amounts of algal-derived essential FA and bacterial FA were not associated with [MeHg] in any size fraction. In pelagic zones, the amount of MeHg in zooplankton related positively to the number of large organisms such as Calanoid copepods and Daphnia. We propose that the accumulation of MeHg in lacustrine zooplankton depends on the zooplankton habitat rather than on the quality of ingested food.


Sign in / Sign up

Export Citation Format

Share Document