Static and dynamic stabilometric force platform study of spinopelvic anterior sagittal imbalance

Author(s):  
Mourad Ould-Slimane ◽  
François Luc ◽  
Nathalie Chastan ◽  
Franck Dujardin ◽  
Paul Michelin ◽  
...  
Author(s):  
Jonathan Kenneth Sinclair ◽  
Lindsay Bottoms

AbstractRecent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge.Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed.The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females.This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Anoli Shah ◽  
Justin V. C. Lemans ◽  
Joseph Zavatsky ◽  
Aakash Agarwal ◽  
Moyo C. Kruyt ◽  
...  

In the anatomy of a normal spine, due to the curvatures in various regions, the C7 plumb line (C7PL) passes through the sacrum so that the head is centered over the pelvic-ball and socket hip and ankle joints. A failure to recognize malalignment in the sagittal plane can affect the patient's activity as well as social interaction due to deficient forward gaze. The sagittal balance configuration leads to the body undertaking the least muscular activities as possible necessary to maintain spinal balance. Global sagittal imbalance is energy consuming and often results in painful compensatory mechanisms that in turn negatively influence the patient's quality of life, self-image, and social interaction due to inability to maintain a horizontal gaze. Deformity, scoliosis, kyphosis, trauma, and/or surgery are some ways that this optimal configuration can be disturbed, thus requiring higher muscular activity to maintain posture and balance. Several parameters such as the thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), sacral slope (SS), and hip and leg positions influence the sagittal balance and thus the optimal configuration of spinal alignment. This review examines the clinical and biomechanical aspects of spinal imbalance, and the biomechanics of spinal balance as dictated by deformities—ankylosing spondylitis (AS), scoliosis and kyphosis; surgical corrections—pedicle subtraction osteotomies (PSO), long segment stabilizations, and consequent postural complications like proximal and distal junctional kyphosis. The study of the biomechanics involved in spinal imbalance is relatively new and thus the literature is rather sparse. This review suggests several potential research topics in the area of spinal biomechanics.


2021 ◽  
Vol 12 ◽  
pp. 215145932199274
Author(s):  
Victor Garcia-Martin ◽  
Ana Verdejo-González ◽  
David Ruiz-Picazo ◽  
José Ramírez-Villaescusa

Introduction: Physiological aging frequently leads to degenerative changes and spinal deformity. In patients with hypolordotic fusions or ankylosing illnesses such as diffuse idiopathic skeletal hyperostosis or ankylosing spondylitis, compensation mechanisms can be altered causing severe pain and disability. In addition, if a total hip replacement and/or knee replacement is performed, both pelvic and lower limbs compensation mechanisms could be damaged and prosthetic dislocation or impingement syndrome could be present. Pedicle subtraction osteotomy has proven to be the optimal correction technique for spinal deformation in patients suffering from a rigid spine. Case Presentation: A 70-year-old male patient with diffuse idiopathic skeletal hyperostosis criteria and a rigid lumbar kyphosis, who previously underwent a total hip and knee replacement, had severe disability. We then performed corrective surgery by doing a pedicle subtraction osteotomy. The procedure and outcomes are presented here. Conclusion: In symptomatic patients with sagittal imbalance and a rigid spine, pedicle subtraction osteotomy can indeed correct spinal deformity and re-establish sagittal balance.


2019 ◽  
Vol 5 (4) ◽  
pp. S6
Author(s):  
Woong-Hwan Choi ◽  
Jin-Sung Park ◽  
Ye-Soo Park

2020 ◽  
Vol 76 ◽  
pp. 134-138
Author(s):  
José Ramírez-Villaescusa ◽  
David Ruiz-Picazo ◽  
Cristina Lamas Oliveira ◽  
Carlos Morillas-Ariño

1992 ◽  
Vol 25 (6) ◽  
pp. 671
Author(s):  
B.P.E. David Andrews ◽  
James J. Dowling

2018 ◽  
Vol 62 (2) ◽  
Author(s):  
Francesco Langella ◽  
Jorge H. Villafañe ◽  
Maryem Ismael ◽  
Josip Buric ◽  
Andrea Piazzola ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document