Characteristics and primary mineralogy of fibrous marine dolomite cements in the end-Ediacaran Dengying Formation, South China: Implications for aragonite–dolomite seas

Author(s):  
Dongfang Zhao ◽  
Xiucheng Tan ◽  
Guang Hu ◽  
Lichao Wang ◽  
Xiaofang Wang ◽  
...  
2009 ◽  
Vol 83 (4) ◽  
pp. 575-587 ◽  
Author(s):  
Bing Shen ◽  
Shuhai Xiao ◽  
Chuanming Zhou ◽  
Xunlai Yuan

Very few macroscopic soft-bodied Ediacaran fossils are hosted in carbonates; most of them are preserved as casts and molds in siliciclastic rocks or as carbonaceous compressions in black shales. This taphonomic bias limits our capability to fully understand the diversity and paleoecology of macroscopic Ediacaran life forms. Previous reports have shown that the upper Ediacaran Dengying Formation in South China and Khatyspyt Formation in Siberia contain macroscopic soft-bodied fossils preserved in bituminous limestone; thus they have the potential to expand our knowledge about the Ediacaran biosphere. However, the biogenecity of the Dengying fossils described in Xiao et al. (2005) has been questioned. In this paper, we provide additional material and arguments in support of the biogenecity of these fossils, which are formally described asYangtziramulus zhanginew genus and species.Yangtziramulus zhangiconsists of a branching system with a central axis and tubes on both sides. The tubes appear to be distally open.Yangtziramulus zhangiis interpreted as a flat-lying benthic organism, as indicated by the mutual avoidance relationship among densely clustered individuals.Yangtziramulus zhangifinds few morphological analogs among modern organisms, but it is broadly similar to several macroscopic Ediacaran forms. Its morphological and ecological complexity is inconsistent with a microbial interpretation.Yangtziramulus zhangiis typically covered by a thin veneer of fine-grained silts, suggesting that it was probably smothered and killed by an episodic flux of silty sediments (event deposits). Its tube walls are replaced with early diagenetic calcspars.


2017 ◽  
Vol 154 (6) ◽  
pp. 1257-1268 ◽  
Author(s):  
BING SHEN ◽  
SHUHAI XIAO ◽  
CHUANMING ZHOU ◽  
LIN DONG ◽  
JIEQIONG CHANG ◽  
...  

AbstractNon-biomineralizing Ediacaran macrofossils are rare in carbonate facies, but they offer valuable information about their three-dimensional internal anatomy and can broaden our view about their taphonomy and palaeoecology. In this study, we report a new Ediacaran fossil, Curviacus ediacaranus new genus and species, from bituminous limestone of the Shibantan Member of the Dengying Formation in the Yangtze Gorges area of South China. Curviacus is reconstructed as a benthic modular organism consisting of serially arranged and crescent-shaped chambers. The chambers are confined by chamber walls that are replicated by calcispars, and are filled by micritic sediments. Such modular body construction is broadly similar to the co-occurring Yangtziramulus zhangii and other Ediacaran modular fossils, such as Palaeopascichnus. The preservation style of Curviacus is similar to Yangtziramulus, although the phylogenetic affinities of both genera remain unresolved. The new fossil adds to the diversity of Ediacaran modular organisms.


Fossil Record ◽  
2015 ◽  
Vol 18 (2) ◽  
pp. 105-117 ◽  
Author(s):  
A. Gamper ◽  
U. Struck ◽  
F. Ohnemueller ◽  
C. Heubeck ◽  
S. Hohl

Abstract. The widespread, terminal Ediacaran Dengying Formation (~ 551–~ 542 Ma) of South China hosts one of the most prominent negative carbonate carbon isotope excursions in Earth's history and thus bears on the correlation of the Precambrian–Cambrian boundary worldwide. The dominantly carbonate strata of the Dengying Formation are largely studied for their unique preservation of its terminal Ediacaran fauna but their geochemical context is poorly known. This study presents the first high-resolution stable isotope record (δ13C, δ18O) of calcareous siliciclastic shallow-water deposits of the Gaojiashan section (Shaanxi Province). The section includes (in ascending order) the Algal Dolomite Member, the Gaojiashan Member and the Beiwan Member of the Dengying Formation. Our data record a major δ13Ccarb negative excursion to −6 ‰ in the uppermost Gaojiashan Member which is comparable in shape and magnitude to the global Precambrian–Cambrian boundary negative δ13C excursion. Our data set is consistent with a "shallow-water anoxia" scenario which is thought to contribute to the "Cambrian explosion". The stratigraphic occurrence of Cloudina and a large negative δ13C excursion suggest that the Precambrian–Cambrian boundary is located near the top of the Gaojiashan Member and, consequently, that overlying carbonates and dolomites of the Beiwan Member are of earliest Cambrian age. Thus the Gaojiashan section may represent a new shallow-water section spanning the Precambrian–Cambrian boundary. Although bio- and chemostratigraphic data support this novel interpretation, we cannot exclude the possibility that the key excursions may represent a local perturbation indicating a restricted-basin environment.


2020 ◽  
Vol 94 (6) ◽  
pp. 1034-1050 ◽  
Author(s):  
Xiaopeng Wang ◽  
Ke Pang ◽  
Zhe Chen ◽  
Bin Wan ◽  
Shuhai Xiao ◽  
...  

AbstractBituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is dominated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present. Herein, we report four species of Arborea from the Shibantan assemblage, including the type species Arborea arborea (Glaessner in Glaessner and Daily, 1959) Glaessner and Wade, 1966, Arborea denticulata new species, and two unnamed species, Arborea sp. A and Arborea sp. B. Arborea arborea is the most abundant frond in the Shibantan assemblage. Arborea denticulata n. sp. resembles Arborea arborea in general morphology but differs in its fewer primary branches and lower length/width ratio of primary branches. Arborea sp. A and Arborea sp. B are fronds with a Hiemalora-type basal attachment. Sealing by microbial mats and authigenic cementation may have played an important role in the preservation of Arborea in the Shibantan assemblage. The Shibantan material of Arborea extends the stratigraphic, ecological, and taphonomic ranges of this genus.UUID: http://zoobank.org/554f21da-5f09-4891-9deb-cbc00c41e5f1


2014 ◽  
Vol 13 ◽  
pp. 74-75
Author(s):  
Shuhai Xiao ◽  
Zhe Chen ◽  
Chuanming Zhou ◽  
Wei Wang ◽  
Chengguo Guan ◽  
...  

2007 ◽  
Vol 81 (6) ◽  
pp. 1396-1411 ◽  
Author(s):  
Bing Shen ◽  
Shuhai Xiao ◽  
Lin Dong ◽  
Zhou Chuanming ◽  
Jianbo Liu

Upper Neoproterozoic successions in the North China and nearby Chaidam blocks are poorly documented. North China successions typically consist of a diamictite unit overlain by siltstone, sandstone, or slate. Similar successions occur in Chaidam, although a cap carbonate lies atop the diamictite unit. The diamictites in both blocks have been variously interpreted as Cryogenian, Ediacaran, or Cambrian glacial deposits. In this paper, we describe problematic macrofossils collected from slate of the upper Zhengmuguan Formation in North China and sandstone of the Zhoujieshan Formation in Chaidam; both fossiliferous formations conformably overlie the aforementioned diamictites. Some of these fossils were previously interpreted as animal traces. Our study recognizes four genera and five species—Helanoichnus helanensis Yang in Yang and Zheng, 1985, Palaeopascichnus minimus n. sp., Palaeopascichnus meniscatus n. sp., Horodyskia moniliformis? Yochelson and Fedonkin, 2000, and Shaanxilithes cf. ningqiangensis Xing et al., 1984. None of these taxa can be interpreted as animal traces. Instead, they are problematic body fossils of unresolved phylogenetic affinities. The fundamental bodyplan similarity between Horodyskia and Palaeopascichnus, both with serially repeated elements, indicates a possible phylogenetic relationship. Thus, at least some Ediacaran organisms may have a deep root because Horodyskia also occurs in Mesoproterozoic successions.Among the four genera reported here, Palaeopascichnus Palij, 1976 and Shaanxilithes Xing et al., 1984 have been known elsewhere in upper Ediacaran successions, including the Dengying Formation (551-542 Ma) in South China. If these two genera have biostratigraphic significance, the fossiliferous units in North China and Chaidam may be upper Ediacaran as well. Thus, the underlying diamictites in North China and Chaidam cannot be of Cambrian age, although their correlation with Ediacaran and Cryogenian glaciations remains unclear. As no other Neoproterozoic diamictite intervals are known in North China and Chaidam, perhaps only one Neoproterozoic glaciation is recorded in that area.


2017 ◽  
Author(s):  
Ke Pang ◽  
◽  
Zhe Chen ◽  
Chuanming Zhou ◽  
Xunlai Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document