dengying formation
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 43)

H-INDEX

14
(FIVE YEARS 2)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Zeqi Li ◽  
Wei Sun ◽  
Shugen Liu ◽  
Zhiwu Li ◽  
Bin Deng ◽  
...  

Despite being one of the most important factors in deep oil and gas exploration, the preservation mechanisms of ultradeep carbonate reservoirs remain poorly understood. This study performed thin-section, geochemistry, field emission scanning electron microscopy, fluid inclusion, and basin model analysis of samples from two boreholes over 8,000 m deep in the Sichuan Basin to determine the pore features and preservation mechanism of the Sinian (Ediacaran) Dengying Formation carbonate reservoirs. The reservoir of CS well #1 is characterised by pore diameters larger than a centimetre (average porosity 7.48%; permeability 0.8562 mD), and the pores are mainly filled with dolomite or bitumen. In contrast, the reservoir of MS well #1 is predominantly composed of micron-scale residual pores (average porosity 1.74%; permeability 0.0072 mD), and the pores are typically filled with dolomite, bitumen, and multistage quartz. The burial thermal histories suggest that both reservoirs were subjected to high pressure (i.e., pressure   coefficient > 1.5 ) before the Late Cretaceous. However, the pressure coefficient of the reservoir of MS well #1 has decreased to less than 1.0 owing to strong structural adjustment this well since the Late Cretaceous, which allowed other ore-forming fluids to enter and fill the pores, resulting in further compaction of the pores. In contrast, the pressure coefficient of CS well #1 is 1.1–1.2, which effectively prevented other ore-forming fluids from entering and filling the pores. The findings show that the dynamic adjustment of the Dengying Formation palaeo-gas reservoir indirectly affects the preservation or failure of the reservoir. The occurrence and geometry of bitumen in the Dengying reservoir exhibit good consistency with the pressure changes in both boreholes. In particular, bitumen with an annular shape and contraction joints in reservoir pores is widespread in CS well #1, which is attributed to the continuous preservation of palaeo-gas fields. Conversely, bitumen with a broken particle shape is located among the epigenetic minerals widespread in MS well #1, which is attributed to failure and depletion of the palaeo-gas fields.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yong Wu ◽  
Xuxu Wang ◽  
Lu Zhou ◽  
Chongyang Han ◽  
Lianjin Zhang ◽  
...  

The dolomite reservoir of the fourth member of Dengying Formation in Moxi area of Sichuan Basin is thin, is fast in lateral variation, and has P-impedance difference from the surrounding rock; it is difficult to identify and predict the dolomite reservoir and fluid properties by conventional poststack seismic inversion. Through the correlation analysis of core test data and logging P-S-wave velocity, this work proposed a formula to calculate the shear wave velocity in different porosity ranges and solved the issue that some wells in the study area have no S-wave logging data. AVO forward analysis reveals that whether the gas reservoir of dolomite reservoir is located at the top of the fourth member of Dengying Formation is the main factor affecting the variation of AVO type. Through cross-plotting analysis of elastic parameters, it is found that P-S-wave velocity ratio and fluid factor are sensitive parameters to gas-bearing property of dolomite reservoir in the study area. By comparing the inversion results of prestack parameters such as density, P-wave impedance, S-wave impedance, P-S-wave velocity ratio, and fluid factor, it is found that the gas-bearing prediction of dolomite reservoir by using P-S-wave velocity ratio and fluid factor obtained from simultaneous prestack inversion had the highest coincidence rate with actual drilling data. At last, according to the distribution characteristics of fluid factor and P-S-wave velocity ratio, the favorable gas-bearing areas of dolomite reservoir in the fourth member of Dengying Formation in the study area are finely predicted, and the next favorable exploration areas were pointed out.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhenzhu Zhou ◽  
Xiaolan Chen ◽  
Haiyang Xia

Sichuan Basin is the only successful basin for shale gas exploration in China. In addition to the main shale in the Lower Silurian Longmaxi formation, the lower Cambrian Qiongzhusi shale is an important potential formation. However, it was once considered that shale gas is difficult to enrich because of its poor sealing conditions and hydrocarbon migration to adjacent reservoirs. With the increasing research on hydrocarbon generation and reservoir in shale of Qiongzhusi Formation in recent years, it has become an important exploration target in Sichuan Basin. The enrichment of oil and gas is closely related to fluid activities. Limited by the degree of exploration, there is little analysis of fluid activities in Qiongzhusi Formation, and there is little analysis of shale gas enrichment potential from the perspective of fluid. The hydrocarbon generated from Qiongzhusi shale in the rift could migrate laterally to the uplift area and form a reservoir in Dengying Formation. The fluid activities from source rock to reservoir are basically the same. Therefore, this paper reconstructed the history of hydrocarbon activities in Dengying reservoirs based on fluid inclusion analysis. Then the fluid activity process in Qiongzhusi shale was studied, and its enrichment conditions of shale gas was discussed. The results show that the hydrocarbon activities of Dengying Formation can be divided into three stages: 1) oil charging stage, 2) oil cracking gas generation stage and 3) gas reservoir adjustment stage. The first stage is under normal pressure, and the second and third stages developed overpressure with pressure coefficients of 1.3 and 1.2, respectively. High pressure coefficient is an important indicator of shale gas enrichment. Because the source rock of Qiongzhusi Formation has always been the main source rock of Dengying Formation, it can supply hydrocarbon to Dengying Formation only with overpressure in gas generation stage. Therefore, overpressure in the last two stages of gas generation indeed existed. As long as the sealing condition of shale itself is not particularly poor, shale gas “sweet points” would be formed. Therefore, the thick shale in Deyang-Anyue rift is the focus of shale gas exploration in Qiongzhusi Formation.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5087
Author(s):  
Kunyu Wang ◽  
Juan Teng ◽  
Hucheng Deng ◽  
Meiyan Fu ◽  
Hongjiang Lu

The fractured-vuggy carbonate reservoirs display strong heterogeneity and need to be classified into different types for specific characterization. In this study, a total of 134 cores from six drilled wells and six outcrops of the Deng #2 and Deng #4 members of the Dengying Formation (Sichuan Basin, Southwest China) were selected to investigate the petrographic characteristics of void spaces in the fractured-vuggy carbonate reservoirs. Four void space types (VSTs) were observed, namely the solution-filling type (SFT), cement-reducing type (CRT), solution-filling breccia type (SFBT) and solution-enlarging fractures and vugs type (SEFVT). The CRT void spaces presented the largest porosity and permeability, followed by the SEFVT, SFBT and SFT. The VSTs presented various logging responses and values, and based on these, an identification method of VSTs using Bayes discriminant analysis (BDA) was proposed. Two test wells were employed for the validation of the identification method, and the results show that there is good agreement between the identification results and core description. The vertical distribution of VSTs indicates that the SFT and SEFVT are well distributed in both the Deng #2 and Deng #4 members. The CRT is mainly found in the Deng #2 member, and the SFBT occurs in the top and middle of the Deng #4 member.


Sign in / Sign up

Export Citation Format

Share Document