scholarly journals A Robinson Crusoe story in the fossil record: Plant-insect interactions from a Middle Jurassic ephemeral volcanic island (Eastern Spain)

2021 ◽  
Vol 583 ◽  
pp. 110655
Author(s):  
Artai A. Santos ◽  
Luis M. Sender ◽  
Torsten Wappler ◽  
Michael S. Engel ◽  
José B. Diez
Paleobiology ◽  
2021 ◽  
pp. 1-22
Author(s):  
Anshuman Swain ◽  
S. Augusta Maccracken ◽  
William F. Fagan ◽  
Conrad C. Labandeira

Abstract Plant–insect associations have been a significant component of terrestrial ecology for more than 400 Myr. Exploring these interactions in the fossil record through novel perspectives provides a window into understanding evolutionary and ecological forces that shaped these interactions. For the past several decades, researchers have documented, described, and categorized fossil evidence of these interactions. Drawing on powerful tools from network science, we propose here a bipartite network representation of fossilized plants and their herbivore-induced leaf damage to understand late Paleozoic plant–insect interactions at the local community level. We focus on four assemblages from north-central Texas, but the methods used in this work are general and can be applied to any well-preserved fossil flora. Network analysis can address key questions in the evolution of insect herbivory that often would be difficult to summarize using standard herbivory metrics.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 134
Author(s):  
Marília Elias Gallon ◽  
Leonardo Gobbo-Neto

Balanced nutritional intake is essential to ensure that insects undergo adequate larval development and metamorphosis. Integrative multidisciplinary approaches have contributed valuable insights regarding the ecological and evolutionary outcomes of plant–insect interactions. To address the plant metabolites involved in the larval development of a specialist insect, we investigated the development of Chlosyne lacinia caterpillars fed on Heliantheae species (Tithonia diversifolia, Tridax procumbens and Aldama robusta) leaves and determined the chemical profile of plants and insects using a metabolomic approach. By means of LC-MS and GC-MS combined analyses, 51 metabolites were putatively identified in Heliantheae species and C. lacinia caterpillars and frass; these metabolites included flavonoids, sesquiterpene lactones, monoterpenoids, sesquiterpenoids, diterpenes, triterpenes, oxygenated terpene derivatives, steroids and lipid derivatives. The leading discriminant metabolites were diterpenes, which were detected only in A. robusta leaves and insects that were fed on this plant-based diet. Additionally, caterpillars fed on A. robusta leaves took longer to complete their development to the adult phase and exhibited a greater diapause rate. Hence, we hypothesized that diterpenes may be involved in the differential larval development. Our findings shed light on the plant metabolites that play roles in insect development and metabolism, opening new research avenues for integrative studies of insect nutritional ecology.


2017 ◽  
Vol 11 (2) ◽  
pp. 152-161 ◽  
Author(s):  
Corinna Rickert ◽  
Andreas Fichtner ◽  
Roel van Klink

Sign in / Sign up

Export Citation Format

Share Document