From induced resistance to defence in plant-insect interactions

2015 ◽  
Vol 157 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Erik H. Poelman
2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 134
Author(s):  
Marília Elias Gallon ◽  
Leonardo Gobbo-Neto

Balanced nutritional intake is essential to ensure that insects undergo adequate larval development and metamorphosis. Integrative multidisciplinary approaches have contributed valuable insights regarding the ecological and evolutionary outcomes of plant–insect interactions. To address the plant metabolites involved in the larval development of a specialist insect, we investigated the development of Chlosyne lacinia caterpillars fed on Heliantheae species (Tithonia diversifolia, Tridax procumbens and Aldama robusta) leaves and determined the chemical profile of plants and insects using a metabolomic approach. By means of LC-MS and GC-MS combined analyses, 51 metabolites were putatively identified in Heliantheae species and C. lacinia caterpillars and frass; these metabolites included flavonoids, sesquiterpene lactones, monoterpenoids, sesquiterpenoids, diterpenes, triterpenes, oxygenated terpene derivatives, steroids and lipid derivatives. The leading discriminant metabolites were diterpenes, which were detected only in A. robusta leaves and insects that were fed on this plant-based diet. Additionally, caterpillars fed on A. robusta leaves took longer to complete their development to the adult phase and exhibited a greater diapause rate. Hence, we hypothesized that diterpenes may be involved in the differential larval development. Our findings shed light on the plant metabolites that play roles in insect development and metabolism, opening new research avenues for integrative studies of insect nutritional ecology.


2017 ◽  
Vol 11 (2) ◽  
pp. 152-161 ◽  
Author(s):  
Corinna Rickert ◽  
Andreas Fichtner ◽  
Roel van Klink

2019 ◽  
Author(s):  
Irene A Vos ◽  
Adriaan Verhage ◽  
Lewis G Watt ◽  
Ido Vlaardingerbroek ◽  
Robert C Schuurink ◽  
...  

AbstractJasmonic acid (JA) is an important plant hormone in the regulation of defenses against chewing herbivores and necrotrophic pathogens. In Arabidopsis thaliana, the JA response pathway consists of two antagonistic branches that are regulated by MYC- and ERF-type transcription factors, respectively. The role of abscisic acid (ABA) and ethylene (ET) in the molecular regulation of the MYC/ERF antagonism during plant-insect interactions is still unclear. Here, we show that production of ABA induced in response to leaf-chewing Pieris rapae caterpillars is required for both the activation of the MYC-branch and the suppression of the ERF-branch during herbivory. Exogenous application of ABA suppressed ectopic ERF-mediated PDF1.2 expression in 35S::ORA59 plants. Moreover, the GCC-box promoter motif, which is required for JA/ET-induced activation of the ERF-branch genes ORA59 and PDF1.2, was targeted by ABA. Application of gaseous ET counteracted activation of the MYC-branch and repression of the ERF-branch by P. rapae, but infection with the ET-inducing necrotrophic pathogen Botrytis cinerea did not. Accordingly, P. rapae performed equally well on B. cinerea-infected and control plants, whereas activation of the MYC-branch resulted in reduced caterpillar performance. Together, these data indicate that upon feeding by P. rapae, ABA is essential for activating the MYC-branch and suppressing the ERF-branch of the JA pathway, which maximizes defense against caterpillars.


Sign in / Sign up

Export Citation Format

Share Document