nutritional ecology
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 52)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
pp. 1-8
Author(s):  
Natalie A. Clay ◽  
Donald B. Shepard ◽  
Adrian A. Garda ◽  
Daniel O. Mesquita ◽  
Alexandre Vasconcellos

Abstract Nutritional ecology of ropical ecosystems like Neotropical savannas, which are of high conservation concern, is understudied. Sodium is essential for heterotrophs but availability often falls short relative to plant consumer requirements. Savanna plant consumers like ants and termites should be sodium-limited due to high temperatures, nutrient-poor soils, and lack of oceanic sodium deposition. We tested the hypothesis that Neotropical savanna ants and termites are sodium-limited. Termites were tested by supplementing 0.25 m2 plots with H2O (control), 0.1%, 0.5%, or 1.0% NaCl and measuring termite presence and artificial substrate mass loss after 1 week. Ants were tested by collecting ants that recruited to H2O (control), 0.1%, 0.5%, and 1.0% NaCl and 1.0%, 10%, and 20% sugar baits on paired diurnal–nocturnal transects. Termites were 16 times more likely to occur on 1% NaCl than H2O plots and wood-feeding termites were most frequent. However, the decomposition rate did not differ among treatments. Ant bait use increased with increasing NaCl concentration and 1% NaCl usage was similar to sugar bait usage. Ants were 3.7 times more active nocturnally than diurnally, but contrary to predictions bait type (water, sugar or NaCl) usage did not differ between day and night. Together, these results provide strong evidence of sodium limitation in Neotropical savannas.


2021 ◽  
Vol 1 ◽  
Author(s):  
Carrie Deans ◽  
William D. Hutchison

Spotted-wing drosophila (SWD), Drosophila suzukii, has become one of the most widely studied insect species over the last decade, largely due to its recent invasion and rapid expansion across the Americas and Europe. Unlike other drosophilid species, which colonize rotting fruit, SWD females possess a serrated ovipositor that allows them to lay eggs in intact ripening fruit, causing significant economic problems for fruit/berry producers worldwide. Though an impressive amount of research has been conducted on SWD's ecology and physiology, aspects of their nutritional ecology remain ambiguous. This review synthesizes the research to date to provide a more comprehensive view of SWD's nutritional relationship with its fruit hosts and associated microbes. Overall, data suggest that SWD's ability to utilize novel resources is likely due to changes in their ecological, rather than physiological, niche that are largely mediated by microbial associations. Studies show that SWD's nutrient intake is comparable to other drosophilid species, indicating limited adaptation to feeding on lower-protein resources. Instead, data show that fruit protein content is a reliable predictor of host suitability and that fruit-microbe dynamics have a strong impact on protein availability. In particularly, fruit protein increases after infestation with SWD-associated microbes, suggesting that initially-suboptimal intact fruits can become protein-rich on a timeframe that is relevant for larval nutrition. This body of work suggests that microbial associations between flies and their fruit hosts can compensate for the nutritional differences between intact and rotting fruit, and that these relationships are likely responsible for SWD's expanded nutritional niche.


2021 ◽  
Author(s):  
◽  
Alexander Dixson

<p>Sexual selection and the mating system of the Wellington tree weta has been extensively studied during the last 15 years. In the past 10 years, nutritional ecology and factors affecting the distribution of species in the genus Hemideina have also been examined in great detail. This recent work and the extensive studies of New Zealand tree weta species that preceded it provide much context and comparison for this thesis, which examines the ecology of a population of tree weta living on Matiu/Somes Island. Less is known about factors affecting the development of the exaggerated male weaponry that is characteristic of much of the genus Hemideina.   This thesis firstly presents a mark-recapture study conducted over 42 months on Matiu/Somes Island to obtain ecological information about the population. Secondly, this thesis presents an experiment on the effects of protein supplement on growth and weaponry in male Wellington tree weta derived from the Matiu/Somes Island population. The results of the field study indicate that male tree weta live longer than females on Matiu/Somes Island and weapon size is positively related to adult longevity of males. Seasonal patterns shown in the population on Matiu/Somes Island and inferences about aspects of their life cycle are discussed. Female tree weta on Matiu/Somes Island formed harems throughout each year and there was a positive relationship between males weapon size and the number of females in a harem. Results do not indicate seasonal differences in harem-forming behaviours of females. The results of the captive rearing study include a shorter development time and larger weaponry as adults in males raised on a protein supplemented diet, compared to individuals raised on an entirely herbivorous diet. Details of differences in the course of development are also discussed for the two diet treatment groups.</p>


2021 ◽  
Author(s):  
◽  
Alexander Dixson

<p>Sexual selection and the mating system of the Wellington tree weta has been extensively studied during the last 15 years. In the past 10 years, nutritional ecology and factors affecting the distribution of species in the genus Hemideina have also been examined in great detail. This recent work and the extensive studies of New Zealand tree weta species that preceded it provide much context and comparison for this thesis, which examines the ecology of a population of tree weta living on Matiu/Somes Island. Less is known about factors affecting the development of the exaggerated male weaponry that is characteristic of much of the genus Hemideina.   This thesis firstly presents a mark-recapture study conducted over 42 months on Matiu/Somes Island to obtain ecological information about the population. Secondly, this thesis presents an experiment on the effects of protein supplement on growth and weaponry in male Wellington tree weta derived from the Matiu/Somes Island population. The results of the field study indicate that male tree weta live longer than females on Matiu/Somes Island and weapon size is positively related to adult longevity of males. Seasonal patterns shown in the population on Matiu/Somes Island and inferences about aspects of their life cycle are discussed. Female tree weta on Matiu/Somes Island formed harems throughout each year and there was a positive relationship between males weapon size and the number of females in a harem. Results do not indicate seasonal differences in harem-forming behaviours of females. The results of the captive rearing study include a shorter development time and larger weaponry as adults in males raised on a protein supplemented diet, compared to individuals raised on an entirely herbivorous diet. Details of differences in the course of development are also discussed for the two diet treatment groups.</p>


2021 ◽  
Author(s):  
Marco Granata ◽  
Andrea Mosini ◽  
Manuel Piana ◽  
Francesco Zambuto ◽  
Enrica Capelli ◽  
...  

Author(s):  
Benoît Béchade ◽  
Yi Hu ◽  
Jon G. Sanders ◽  
Christian S. Cabuslay ◽  
Piotr Łukasik ◽  
...  

AbstractGut bacterial symbionts can support animal nutrition by facilitating digestion and providing valuable metabolites. While the composition of gut symbiont communities shifts with host development in holometabolous insects, changes in symbiotic roles between immature and adult stages are not well documented, especially in ants. Here, we explored the metabolic capabilities of microbiomes sampled from herbivorous turtle ant (Cephalotes sp.) larvae and adult workers through genomic and metagenomic screenings and targeted in vitro metabolic assays. We reveal that larval guts harbor bacterial symbionts from the Enterobacteriales, Lactobacillales and Rhizobiales orders, with impressive metabolic capabilities, including catabolism of plant and fungal recalcitrant fibers common in turtle ant diets, and energy-generating fermentation. Additionally, several members of the specialized turtle ant adult gut microbiome, sampled downstream of an anatomical barrier that dams large food particles, show a conserved potential to depolymerize many dietary fibers and other carbohydrates. Symbionts from both life stages have the genomic capacity to recycle nitrogen, synthesize amino acids and B-vitamins, and perform several key aspects of sulfur metabolism. We also document, for the first time in ants, an adult-associated Campylobacterales symbiont with an apparent capacity to anaerobically oxidize sulfide, reduce nitrate, and fix carbon dioxide. With help of their gut symbionts, including several bacteria likely acquired from the environment, turtle ant larvae appear as an important component of turtle ant colony digestion and nutrition. In addition, the conserved nature of the digestive, energy-generating, and nutritive capacities among adult-enriched symbionts suggests that nutritional ecology of turtle ant colonies has long been shaped by specialized, behaviorally-transferred gut bacteria with over 46 million years of residency.


Author(s):  
Mazarin Akami ◽  
Ousman Tamgue ◽  
Xueming Ren ◽  
Yaohui Wang ◽  
Xuewei Qi ◽  
...  

Insects entertain intricate and mutualistic relationship with an array of microorganisms, which significantly influence their fitness, ecology and evolution. In recent decades, there has been increasing interest toward studying the effects of microbiome on many host insects (Dipterans, Lepidopterans, and Coleopterans). Studies so far realized indicate that gut microbiome contribute to host nutritional ecology, defense, immunity and lifespan. Bactrocera dorsalis (Tephritidae: Diptera) is a polyphagous fruit fly which attacks a huge variety of fruits and vegetables worldwide and has been placed as a quarantine species by many countries. To investigate the specific functions of the gut endosymbionts, it is a prerequisite to know the composition of gut bacterial communities whose manipulation will help to decipher their ecological relevance. Here, we used the culture-dependent technique to isolate and identify gut bacteria from B. dorsalis at different developmental stages. The results revealed 11 bacterial species from the third instar larvae, 18 and 12 from female and male populations, respectively. These bacteria were assigned to six families, namely, Enterobacteriaceae, Enterococcaceae, Staphylococcaceae, Streptococcaceae, Micrococcaceae and Bacillaceae. Bacterial species from these families were differentially represented in various samples, except Klebsiella oxytoca , Enterobacter cloacae, Pantoea dispers and Enterococcus faecalis that were detected at all developmental stages. Overall, Enterobacteriaceae was the most dominant family in females and third instar larvae accounting for 57.89% and 26.32%, respectively, while Enterococcaceae was dominant in males with 75% of the total bacterial taxa. These results suggest that B. dorsalis possesses a huge variety of cultivable bacteria that could be used to explore their specific functions on host physiology and fitness.


Sign in / Sign up

Export Citation Format

Share Document