Amphibian body size and species richness as a proxy for primary productivity and climate: The Orce wetlands (Early Pleistocene, Guadix-Baza Basin, SE Spain)

Author(s):  
Almudena Martínez-Monzón ◽  
Christian Sánchez-Bandera ◽  
Ana Fagoaga ◽  
Oriol Oms ◽  
Jordi Agustí ◽  
...  
2005 ◽  
Vol 165 (5) ◽  
pp. 600
Author(s):  
Nick J. B. Isaac ◽  
Jones ◽  
Gittleman ◽  
Purvis

Author(s):  
Adrian Marciszak ◽  
Yuriy Semenov ◽  
Piotr Portnicki ◽  
Tamara Derkach

AbstractCranial material ofPachycrocuta brevirostrisfrom the late Early Pleistocene site of Nogaisk is the first record of this species in Ukraine. This large hyena was a representative of the Tamanian faunal complex and a single specialised scavenger in these faunas. The revisited European records list ofP.brevirostrisdocumented the presence of this species in 101 sites, dated in the range of 3.5–0.4 Ma. This species first disappeared in Africa, survived in Europe until ca. 0.8–0.7 Ma, and its last, relict occurrence was known from south-eastern Asia. The main reason of extinction ofP.brevirostrisprobably was the competition withCrocuta crocuta. The cave hyena was smaller, but its teeth were proportionally larger to the body size, better adapted to crushing bones and slicing meat, and could also hunt united in larger groups.


2018 ◽  
Vol 285 (1880) ◽  
pp. 20180744 ◽  
Author(s):  
Yifan Pei ◽  
Mihai Valcu ◽  
Bart Kempenaers

Being active at different times facilitates the coexistence of functionally similar species. Hence, time partitioning might be induced by competition. However, the relative importance of direct interference and indirect exploitation competition on time partitioning remains unclear. The aim of this study was to investigate the relative importance of these two forms of competition on the occurrence of time-shifting among avian predator species. As a measure of interference competition pressure, we used the species richness of day-active avian predator species or of night-active avian predator species (i.e. species of Accipitriformes, Falconiformes and Strigiformes) in a particular geographical area (assemblage). As an estimate of exploitation competition pressure, we used the total species richness of avian predators in each assemblage. Estimates of the intensity of interference competition robustly predicted the number of Accipitriformes species that became crepuscular and the number of Strigiformes species that became day-active or strictly crepuscular. Interference competition pressure may depend on body size and on the total duration of the typical active period (day or night length). Our results support—to some extent—that smaller species are more likely to become time-shifters. Day length did not have an effect on the number of time-shifter species in the Accipitriformes. Among the large Strigiformes, more time-shifter species occur in areas where nights are shorter (i.e. where less of the typical time resource is available). However, in the small Strigiformes, we found the opposite, counterintuitive effect: more time-shifters where nights are longer. Exploitation competition may have had an additional positive effect on the number of time-shifters, but only in Accipitriformes, and the effect was not as robust. Our results thus support the interference competition hypothesis, suggesting that animals may have shifted their time of activity, despite phylogenetic constraints on the ability to do so, to reduce the costs of direct interactions. Our findings also highlight the influence of body size as a surrogate of competitive ability during encounters on time partitioning, at least among avian predators.


2018 ◽  
Vol 28 (3) ◽  
pp. 315-327 ◽  
Author(s):  
D. R. Barneche ◽  
E. L. Rezende ◽  
V. Parravicini ◽  
E. Maire ◽  
G. J. Edgar ◽  
...  

Paleobiology ◽  
1989 ◽  
Vol 15 (4) ◽  
pp. 335-356 ◽  
Author(s):  
Geerat J. Vermeij

Geographical restriction to refuges implies the regional extinction of taxa in areas of the previous range falling outside the refuge. A comparison of the circumstances in the refuge with those in areas from which the taxa were eliminated is potentially informative for pinpointing the causes of extinction. A synthesis of data on the geographical and stratigraphical distributions of cool-water molluscs of the North Pacific and North Atlantic Oceans during the late Neogene reveals four patterns of geographical restriction, at least two of which imply that climatic cooling was not the only cause of extinction during the last several million years. These four patterns are (1) the northwestern Pacific restriction, involving 15 taxa whose amphi-Pacific distributions during the late Neogene became subsequently restricted to the Asian side of the Pacific; (2) the northwestern Atlantic restriction, involving six taxa whose early Pleistocene distribution is inferred to have been amphi-Atlantic, but whose present-day and late Pleistocene ranges are confined to the northwestern Atlantic; (3) a vicariant Pacific pattern, in which many ancestral amphi-Pacific taxa gave rise to separate eastern and western descendants; and (4) the circumboreal restriction, involving six taxa whose early Pleistocene distribution, encompassing both the Atlantic and Pacific Oceans, became subsequently limited to the North Pacific. Like the Pliocene extinctions in the Atlantic, previously studied by Stanley and others, the vicariant Pacific pattern is most reasonably interpreted as having resulted from regional extinction of northern populations in response to cooling. The northwestern Pacific and Atlantic restrictions, however, cannot be accounted for in this way. In contrast to the northeastern margins of the Pacific and Atlantic, the northwestern margins are today characterized by wide temperature fluctuations and by extensive development of shore ice in winter. Northeastern, rather than northwestern, restriction would be expected if cooling were the overriding cause of regional extinction. Among the other possible causes of extinction, only a decrease in primary productivity can account for the observed northwestern and circumboreal patterns of restriction. Geographical patterns of body size and the distribution of siliceous deposits provide supporting evidence that primary productivity declined after the Miocene in the northeastern Pacific, but remained high in the northwestern Pacific, and that productivity in the Pacific is generally higher than it is in the Atlantic. The patterns of geographical restriction in the northern oceans thus provide additional support to previous inferences that reductions in primary productivity have played a significant role in marine extinctions.


2015 ◽  
Vol 2 ◽  
Author(s):  
Oikonomou Anthi ◽  
Leprieur Fabien ◽  
Leonardos Ioannis

Sign in / Sign up

Export Citation Format

Share Document