Modeling of aggregation kernels for fluidized beds using discrete particle model simulations

Particuology ◽  
2014 ◽  
Vol 13 ◽  
pp. 134-144 ◽  
Author(s):  
Nageswara Rao Narni ◽  
Mirko Peglow ◽  
Gerald Warnecke ◽  
Jitendra Kumar ◽  
Stefan Heinrich ◽  
...  
2019 ◽  
Vol 872 ◽  
pp. 784-817 ◽  
Author(s):  
Jonathan Michael Foonlan Tsang ◽  
Stuart B. Dalziel ◽  
N. M. Vriend

We consider the steady flow of a granular current over a uniformly sloped surface that is smooth upstream (allowing slip for $x<0$) but rough downstream (imposing a no-slip condition on $x>0$), with a sharp transition at $x=0$. This problem is similar to the classical Blasius problem, which considers the growth of a boundary layer over a flat plate in a Newtonian fluid that is subject to a similar step change in boundary conditions. Our discrete particle model simulations show that a comparable boundary-layer phenomenon occurs for the granular problem: the effects of basal roughness are initially localised at the base but gradually spread throughout the depth of the current. A rheological model can be used to investigate the changing internal velocity profile. The boundary layer is a region of high shear rate and therefore high inertial number $I$; its dynamics is governed by the asymptotic behaviour of the granular rheology for high values of the inertial number. The $\unicode[STIX]{x1D707}(I)$ rheology (Jop et al., Nature, vol. 441 (7094), 2006, pp. 727–730) asserts that $\text{d}\unicode[STIX]{x1D707}/\text{d}I=O(1/I^{2})$ as $I\rightarrow \infty$, but current experimental evidence is insufficient to confirm this. We show that this rheology does not admit a self-similar boundary layer, but that there exist generalisations of the $\unicode[STIX]{x1D707}(I)$ rheology, with different dependencies of $\unicode[STIX]{x1D707}(I)$ on $I$, for which such self-similar solutions do exist. These solutions show good quantitative agreement with the results of our discrete particle model simulations.


2021 ◽  
Vol 236 ◽  
pp. 112000
Author(s):  
Eliška Janouchová ◽  
Anna Kučerová ◽  
Jan Sýkora ◽  
Jan Vorel ◽  
Roman Wan-Wendner

Sign in / Sign up

Export Citation Format

Share Document