Retrieval of aerosol size distribution using improved quantum-behaved particle swarm optimization on spectral extinction measurements

Particuology ◽  
2016 ◽  
Vol 28 ◽  
pp. 6-14 ◽  
Author(s):  
Zhenzong He ◽  
Hong Qi ◽  
Qin Chen ◽  
Liming Ruan
2017 ◽  
Vol 14 (2) ◽  
Author(s):  
Kaitlin DuPaul ◽  
Adam Whitten

A synthetic set of aerosol optical depths (AODs) generated from a standard set of aerosol size distributions was analyzed by a parameter based particle swarm optimization (PBPSO) routine in order to test the reproducibility of the results. Junge and lognormal size distributions were consistently reproduced. Gamma and bimodal distributions showed large variability in solutions. values were used to determine the best subset of possible solutions allowing quantification of parameters with uncertainties when using PBPSO. AODs measured by a sun photometer on a clear day (20160413) and a foggy day (20160508) were then processed by the PBPSO program for both bimodal and lognormal distributions. Results showed that in general the foggy day has smaller values indicating that the PBPSO algorithm is better able to match AODs when there is a larger aerosol load in the atmosphere. The bimodal distribution from the clear day best describes the aerosol size distribution since the values are lower. The lognormal distribution best describes the aerosol size distribution on the foggy day (20160508). KEYWORDS: Atmospheric Aerosols; Size Distributions; Junge; Bimodal; Gamma; Lognormal; Particle Swarm Optimization; Inverse Problem; Aerosol Optical Depth


2015 ◽  
Vol 19 (6) ◽  
pp. 2151-2160 ◽  
Author(s):  
Hong Qi ◽  
Zhen-Zong He ◽  
Shuai Gong ◽  
Li-Ming Ruan

The particle size distribution (PSD) plays an important role in environmental pollution detection and human health protection, such as fog, haze and soot. In this study, the Attractive and Repulsive Particle Swarm Optimization (ARPSO) algorithm and the basic PSO were applied to retrieve the PSD. The spectral extinction technique coupled with the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law were employed to investigate the retrieval of the PSD. Three commonly used monomodal PSDs, i.e. the Rosin-Rammer (R-R) distribution, the normal (N-N) distribution, the logarithmic normal (L-N) distribution were studied in the dependent model. Then, an optimal wavelengths selection algorithm was proposed. To study the accuracy and robustness of the inverse results, some characteristic parameters were employed. The research revealed that the ARPSO showed more accurate and faster convergence rate than the basic PSO, even with random measurement error. Moreover, the investigation also demonstrated that the inverse results of four incident laser wavelengths showed more accurate and robust than those of two wavelengths. The research also found that if increasing the interval of the selected incident laser wavelengths, inverse results would show more accurate, even in the presence of random error.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document