The Residual Generator: An Improved Divergence Minimization Framework for GAN

2021 ◽  
pp. 108222
Author(s):  
Aurele Tohokantche Gnanha ◽  
Wenming Cao ◽  
Xudong Mao ◽  
Si Wu ◽  
Hau-San Wong ◽  
...  
Machines ◽  
2014 ◽  
Vol 2 (4) ◽  
pp. 275-298 ◽  
Author(s):  
Silvio Simani ◽  
Saverio Farsoni ◽  
Paolo Castaldi

2020 ◽  
Vol 40 (4) ◽  
pp. 589-599
Author(s):  
Zhengquan Chen ◽  
Lu Han ◽  
Yandong Hou

Purpose This paper proposes a novel method of fault detection, which is based on H_/H∞ Runge–Kutta observer and an adaptive threshold for a class of closed-loop non-linear systems. The purpose of this paper is to improve the rapidity and accuracy of fault detection. Design/methodology/approach First, the authors design the H_/H∞ Runge–Kutta fault detection observer, which is used as a residual generator to decouple the residual from the input. The H_ performance index metric in the specified frequency domain is used to describe how sensitive the residual to the fault. The H∞ norm is used to describe the residual robustness to the external disturbance of the systems. The residual generator is designed to achieve the best tradeoff between robustness against unknown disturbances but sensitivity to faults, thus realizing the accurate detection of the fault by suppressing the influence of noise and disturbance on the residual. Next, the design of the H_/H∞ fault detection observer is transformed into a convex optimization problem and solved by linear matrix inequality. Then, a new adaptive threshold is designed to improve the accuracy of fault detection. Findings The effectiveness and correctness of the method are tested in simulation experiments. Originality/value This paper presents a novel approach to improve the accuracy and rapidity of fault detection for closed-loop non-linear system with disturbances and noise.


2011 ◽  
Vol 110-116 ◽  
pp. 5001-5008
Author(s):  
Salomon Montenegro ◽  
Lenin Luna

The objective of this paper is to design a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a design of dynamic neural network with dynamic neurons is done, those neurons corresponds a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the designed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the designed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed design to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.


2020 ◽  
Vol 12 (18) ◽  
pp. 3066
Author(s):  
Shuhan Chen ◽  
Bai Xue ◽  
Han Yang ◽  
Xiaorun Li ◽  
Liaoying Zhao ◽  
...  

Due to invariance to significant intensity differences, similarity metrics have been widely used as criteria for an area-based method for registering optical remote sensing image. However, for images with large scale and rotation difference, the robustness of similarity metrics can greatly determine the registration accuracy. In addition, area-based methods usually require appropriately selected initial values for registration parameters. This paper presents a registration approach using spatial consistency (SC) and average regional information divergence (ARID), called spatial-consistency and average regional information divergence minimization via quantum-behaved particle swarm optimization (SC-ARID-QPSO) for optical remote sensing images registration. Its key idea minimizes ARID with SC to select an ARID-minimized spatial consistent feature point set. Then, the selected consistent feature set is tuned randomly to generate a set of M registration parameters, which provide initial particle warms to implement QPSO to obtain final optimal registration parameters. The proposed ARID is used as a criterion for the selection of consistent feature set, the generation of initial parameter sets, and fitness functions used by QPSO. The iterative process of QPSO is terminated based on a custom-designed automatic stopping rule. To evaluate the performance of SC-ARID-QPSO, both simulated and real images are used for experiments for validation. In addition, two data sets are particularly designed to conduct a comparative study and analysis with existing state-of-the-art methods. The experimental results demonstrate that SC-ARID-QPSO produces better registration accuracy and robustness than compared methods.


Sign in / Sign up

Export Citation Format

Share Document