Molecular genetic investigation of dental attrition in mice

2013 ◽  
Vol 23 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Chiaki Tatsumi ◽  
Kei Okamoto
2020 ◽  
Vol 33 (6) ◽  
pp. 691-701 ◽  
Author(s):  
Tatsushi Tanaka ◽  
Kohei Aoyama ◽  
Atsushi Suzuki ◽  
Shinji Saitoh ◽  
Haruo Mizuno

AbstractObjectivesCongenital hypothyroidism (CH) is the most common congenital endocrine disorder. Recent advances in genetic testing have revealed its causative mutations in some CH patients. However, the underlying etiology remains unknown in most patients. This study aimed to perform clinical and genetic investigation in Japanese CH patients to uncover genotype-phenotype correlations.MethodsWe enrolled 136 Japanese patients with transient or permanent CH between April 2015 and March 2017, and performed next-generation sequencing of 19 genes implicated in CH.ResultsWe identified potentially pathogenic bi-allelic variants in DUOX2, TSHR, and TPO in 19, 5, and 1 patient, respectively (autosomal recessive), and a potentially pathogenic mono-allelic variant in NKX2-1 (autosomal dominant) in 1 patient. Molecular genetic diagnosis was highly suggested in 26 patients (19%) from 23 families. We also detected a potentially pathogenic mono-allelic variant in five recessive genes (DUOX2, TSHR, TG, DUOXA2, and TPO) in 31 unrelated patients (23%), although the pathogenicity of these variants remains inconclusive. Patients with bi-allelic DUOX2 variants showed a more severe clinical presentation in infancy than those with bi-allelic TSHR variants. However, this trend reversed beyond infancy. There were no statistical differences in initial thyroid stimulating hormone, free thyroxine, thyroglobulin, and levothyroxine dose as of March 2017 between patients with bi-allelic and mono-allelic DUOX2 variants.ConclusionsThe prevalence of potentially-pathogenic variants in Japanese CH patients was similar to that found by previous reports. Our study demonstrates a genotype-phenotype correlation in Japanese CH patients.


2017 ◽  
Vol 7 (1) ◽  
pp. 41
Author(s):  
Yeong-Bin Kim ◽  
Hyung-Doo Park ◽  
Rihwa Choi ◽  
Soo-Youn Lee ◽  
Chang-Seok Ki ◽  
...  

2021 ◽  
Author(s):  
Erik D. Enbody ◽  
C. Grace Sprehn ◽  
Arhat Abzhanov ◽  
Huijuan Bi ◽  
Mariya P. Dobreva ◽  
...  

AbstractCarotenoid-based polymorphisms are widespread in populations of birds, fish, and reptiles1, but little is known of how they affect fitness and are maintained as species multiply2. We report a combined field and molecular-genetic investigation of a nestling beak color polymorphism in Darwin’s finches. Beaks are pink or yellow, and yellow is recessive3. Here we show that the polymorphism arose in the Galápagos approximately half a million years ago through a regulatory mutation in the BCO2 gene, and is shared by 14 descendant species. The frequency of the yellow genotype is associated with cactus flower abundance in cactus finches, and is altered by introgressive hybridization. The polymorphism is most likely a balanced polymorphism, maintained by ecological selection pressures associated with diet, and augmented by occasional interspecific introgression. Polymorphisms that are hidden as adults, as here, may contribute to evolutionary diversification in underappreciated ways in other systems.


2021 ◽  
Author(s):  
J Engert ◽  
J Doll ◽  
J Völker ◽  
M Scholl ◽  
L Bieniussa ◽  
...  

JIMD Reports ◽  
2020 ◽  
Vol 52 (1) ◽  
pp. 28-34
Author(s):  
Jasmine Isler ◽  
Véronique Rüfenacht ◽  
Corinne Gemperle ◽  
Gabriella Allegri ◽  
Johannes Häberle

Sign in / Sign up

Export Citation Format

Share Document