Using chitosan gels as a toluidine blue O delivery system for photodynamic therapy of buccal cancer: In vitro and in vivo studies

2015 ◽  
Vol 12 (1) ◽  
pp. 98-107 ◽  
Author(s):  
Thierllen Barroso Graciano ◽  
Tatielle Soares Coutinho ◽  
Camila Beatriz Cressoni ◽  
Cristhiane de Paula Freitas ◽  
Maria Bernadete Riemma Pierre ◽  
...  
2021 ◽  
Vol 18 ◽  
Author(s):  
Subheet Kumar Jain ◽  
Neha Panchal ◽  
Amrinder Singh ◽  
Shubham Thakur ◽  
Navid Reza Shahtaghi ◽  
...  

Background: Diclofenac sodium (DS) injection is widely used in the management of acute or chronic pain and inflammatory diseases. It incorporates 20 % w/v Transcutol-P as a solubilizer to make the stable injectable formulation. However, the use of Transcutol-P in high concentration leads to adverse effects such as severe nephrotoxicity, etc. Some advancements resulted in the formulation of an aqueous based injectable but that too used benzyl alcohol reported to be toxic for human use. Objective: To develop an injectable self-micro emulsifying drug delivery system (SMEDDS) as a novel carrier of DS for prompt release with better safety and efficacy. Methods: A solubility study was performed with different surfactants and co-surfactants. The conventional stirring method was employed for the formulation of SMEDDS. Detailed in vitro characterization was done for different quality control parameters. In vivo studies were performed using Wistar rats for pharmacokinetic evaluation, toxicological analysis, and analgesic activity. Results: The optimized formulation exhibited good physical stability, ideal globule size (156±0.4 nm), quick release, better therapeutics, and safety, increase in LD50 (221.9 mg/kg) to that of the commercial counterpart (109.9 mg/kg). Further, pre-treatment with optimized formulation reduced the carrageenan-induced rat paw oedema by 88±1.2 % after 4 h, compared to 77±1.6 % inhibition with commercial DS formulation. Moreover, optimized formulation significantly (p<0.05) inhibited the pain sensation in the acetic-acid induced writhing test in mice compared to its commercial equivalent with a better pharmacokinetic profile. Conclusion: The above findings confirmed that liquid SMEDDS could be a successful carrier for the safe and effective delivery of DS


Laser Physics ◽  
2014 ◽  
Vol 24 (4) ◽  
pp. 045601 ◽  
Author(s):  
F Alves ◽  
E G Mima ◽  
L N Dovigo ◽  
V S Bagnato ◽  
J H Jorge ◽  
...  

2015 ◽  
Vol 99 (9) ◽  
pp. 4031-4043 ◽  
Author(s):  
Mariusz Grinholc ◽  
Joanna Nakonieczna ◽  
Grzegorz Fila ◽  
Aleksandra Taraszkiewicz ◽  
Anna Kawiak ◽  
...  

2019 ◽  
Vol 8 (2) ◽  
pp. 31-46
Author(s):  
D. A. Tzerkovsky ◽  
E. L. Protopovich ◽  
D. S. Stupak

In the present publication, authors have analyzed the results of using sonodynamic and sono-photodynamic therapy with photosensitizing agents of various classes (hematoporphyrin, 5-aminolevulinic acid, chlorin derivatives, etc.) in experimental oncology. In a number of in vitro and in vivo studies, the high antitumor efficacy of the above treatment methods has been proven. Ultrasonic treatment with a pulse frequency of 1–3 MHz and an intensity of 0.7 to 5 W/cm2 , independently and in combination with photo-irradiation of experimental tumors, can significantly improve the cytotoxic properties of photosensitizers. This became the basisfor testing the methodsin patients with malignant neoplasms of various localizations. Scientists fromSouth-East Asia presented the preliminary results of the use of sonodynamic and sono-photodynamic therapy with photosensitizers in the treatment of malignant pathology of the mammary gland, stomach, esophagus, prostate, lung and brain. Analysis of the obtained data indicates the absence of serious adverse events and an increase in the antitumor efficacy of treatment, which included these treatment methods with chlorin-type photosensitizers. 


Sign in / Sign up

Export Citation Format

Share Document