scholarly journals Sonodynamic and sono-photodynamic therapy in oncology

2019 ◽  
Vol 8 (2) ◽  
pp. 31-46
Author(s):  
D. A. Tzerkovsky ◽  
E. L. Protopovich ◽  
D. S. Stupak

In the present publication, authors have analyzed the results of using sonodynamic and sono-photodynamic therapy with photosensitizing agents of various classes (hematoporphyrin, 5-aminolevulinic acid, chlorin derivatives, etc.) in experimental oncology. In a number of in vitro and in vivo studies, the high antitumor efficacy of the above treatment methods has been proven. Ultrasonic treatment with a pulse frequency of 1–3 MHz and an intensity of 0.7 to 5 W/cm2 , independently and in combination with photo-irradiation of experimental tumors, can significantly improve the cytotoxic properties of photosensitizers. This became the basisfor testing the methodsin patients with malignant neoplasms of various localizations. Scientists fromSouth-East Asia presented the preliminary results of the use of sonodynamic and sono-photodynamic therapy with photosensitizers in the treatment of malignant pathology of the mammary gland, stomach, esophagus, prostate, lung and brain. Analysis of the obtained data indicates the absence of serious adverse events and an increase in the antitumor efficacy of treatment, which included these treatment methods with chlorin-type photosensitizers. 

Nanomedicine ◽  
2019 ◽  
Vol 14 (18) ◽  
pp. 2423-2440 ◽  
Author(s):  
Canyu Yang ◽  
Bing He ◽  
Qiang Zheng ◽  
Dakuan Wang ◽  
Mengmeng Qin ◽  
...  

Aim: We developed a polycaprolactone-based nanoparticle (NP) to encapsulate tryptanthrin derivative CY-1-4 and evaluated its antitumor efficacy. Materials & methods: CY-1-4 NPs were prepared and evaluated for their cytotoxicity and associated mechanisms, indoleamine 2,3-dioxygenase (IDO)-inhibitory ability, immunogenic cell death (ICD)-inducing ability and antitumor efficacy. Results: CY-1-4 NPs were 123 nm in size. In vitro experiments indicated that they could both induce ICD and inhibit IDO. In vivo studies indicated that a medium dose reduced 58% of the tumor burden in a B16-F10-bearing mouse model, decreased IDO expression in tumor tissues and regulated lymphocytes subsets in spleen and tumors. Conclusion: CY-1-4 is a potential antitumor candidate that could act as a single agent with combined functions of IDO inhibition and ICD induction.


2012 ◽  
Vol 71 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Wei-Hua Hao ◽  
Jong-Jing Wang ◽  
Shu-Ping Hsueh ◽  
Pei-Jing Hsu ◽  
Li-Chien Chang ◽  
...  

Laser Physics ◽  
2014 ◽  
Vol 24 (4) ◽  
pp. 045601 ◽  
Author(s):  
F Alves ◽  
E G Mima ◽  
L N Dovigo ◽  
V S Bagnato ◽  
J H Jorge ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41560-41576
Author(s):  
Nokuphila Winifred Nompumelelo Simelane ◽  
Cherie Ann Kruger ◽  
Heidi Abrahamse

This review highlights the various photo diagnostic and treatment methods utilized for CRC, over the last seven years.


2015 ◽  
Vol 99 (9) ◽  
pp. 4031-4043 ◽  
Author(s):  
Mariusz Grinholc ◽  
Joanna Nakonieczna ◽  
Grzegorz Fila ◽  
Aleksandra Taraszkiewicz ◽  
Anna Kawiak ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Fangcen Liu ◽  
Xinyue Wang ◽  
Qin Liu ◽  
Huan Zhang ◽  
Li Xie ◽  
...  

AbstractCombination therapy has been a standard strategy in the clinical tumor treatment. We have demonstrated that combination of Tetradrine (Tet) and Cisplatin (CDDP) presented a marked synergistic anticancer activity, but inevitable side effects limit their therapeutic concentration. Considering the different physicochemical and pharmacokinetic properties of the two drugs, we loaded them into a nanovehicle together by the improved double emulsion method. The nanoparticles (NPs) were prepared from the mixture of poly(ethyleneglycol)–polycaprolactone (PEG–PCL) and polycarprolactone (HO-PCL), so CDDP and Tet can be located into the NPs simultaneously, resulting in low interfering effect and high stability. Images from fluorescence microscope revealed the cellular uptake of both hydrophilic and hydrophobic agents delivered by the NPs. In vitro studies on different tumor cell lines and tumor tissue revealed increased tumor inhibition and apoptosis rates. As to the in vivo studies, superior antitumor efficacy and reduced side effects were observed in the NPs group. Furthermore, 18FDG-PET/CT imaging demonstrated that NPs reduced metabolic activities of tumors more prominently. Our results suggest that PEG–PCL block copolymeric NPs could be a promising carrier for combined chemotherapy with solid efficacy and minor side effects.


Sign in / Sign up

Export Citation Format

Share Document