The influence of ALA-mediated photodynamic therapy on secretion of selected growth factors by colon cancer cells in hypoxia-like environment in vitro

2015 ◽  
Vol 12 (4) ◽  
pp. 598-611 ◽  
Author(s):  
Katarzyna Wawrzyniec ◽  
Aleksandra Kawczyk-Krupka ◽  
Zenon P. Czuba ◽  
Wojciech Król ◽  
Aleksander Sieroń
2019 ◽  
Vol 25 (1) ◽  
pp. 1-6 ◽  
Author(s):  
J. A. Rodrigues ◽  
R. Amorim ◽  
M. F. Silva ◽  
F. Baltazar ◽  
R. F. Wolffenbuttel ◽  
...  

Author(s):  
Aleksandra Kawczyk-Krupka ◽  
Marta Kaleta-Richter ◽  
Anna Miedzybrodzka ◽  
Wojciech Latos ◽  
Aleksander Sieron ◽  
...  

2020 ◽  
Vol 19 ◽  
pp. 153473542091893 ◽  
Author(s):  
Marta Kaleta-Richter ◽  
David Aebisher ◽  
Dagmara Jaworska ◽  
Zenon Czuba ◽  
Grzegorz Cieślar ◽  
...  

The aim of this study was to measure the secretion of interleukin (IL)-8 and -10 during an elicited immune response following sublethal doses of hypericin-mediated photodynamic therapy (HY-PDT) in experimental models of residual colon cancer cells in vitro. Investigations were performed on the cancer cell lines SW480 and SW620. Each cell line was exposed to 3 different concentrations of the photosensitizer HY and various doses of irradiation. The cell metabolic activity using an MTT assay was performed and then the measurement of IL-8 and IL-10 secretion was achieved using the Bio-Plex ProTMAssay. There was a statistically significant amplification of IL-8 secretion during HY-PDT in the SW620 cell line (at 1 J/cm2: P = .01, 5 J/cm2: P = .002, and 10 J/cm2: P = .025) and a statistically significant decrease in IL-8 during HY-PDT in the SW480 cell line (at 1 J/cm2: P = .05, 5 J/cm2: P = .035, and 10 J/cm2: P = .035). No statistically significant differences in IL-10 concentration were found following HY-PDT in the SW480 (at 1 J/cm2: P > .4, 5 J/cm2: P = .1, and 10 J/cm2: P = .075) or in the SW620 cell line (at 1 J/cm2: P > .4, 5 J/cm2: P > .4, and 10 J/cm2: P > .4). HY-PDT can both eliminate and control a primary tumor via cytotoxic effects, and at sublethal doses, it can affect IL release by colon cancer cells. In this experiment, this influence depended on the level of tumor cell metastatic activity.


2018 ◽  
Vol 22 ◽  
pp. 137-139 ◽  
Author(s):  
Aleksandra Kawczyk-Krupka ◽  
Zenon Czuba ◽  
Wojciech Latos ◽  
Katarzyna Wasilewska ◽  
Thomas Verwanger ◽  
...  

Metallomics ◽  
2015 ◽  
Vol 7 (10) ◽  
pp. 1390-1398 ◽  
Author(s):  
Kathryn M. Marshall ◽  
Marie Laval ◽  
Ortis Estacio ◽  
Damien F. Hudson ◽  
Paul Kalitsis ◽  
...  

Over-expression of growth factors can contribute to the development and progression of cancer, and gastrins in particular have been implicated in accelerating the development of gastrointestinal cancers.


2021 ◽  
Vol 11 ◽  
Author(s):  
Şeyda Berk ◽  
Joseph A. M. J. L. Janssen ◽  
Peter M. van Koetsveld ◽  
Fadime Dogan ◽  
Naci Değerli ◽  
...  

There are only a few experimental studies which have investigated effects of glucose alone, and glucose in combination with insulin/insulin-like growth factors (IGF) on the growth of colon cancer. In the present study, we studied in vitro in human colorectal cancer cells originating from four Dukes’ stages of colorectal cancer the effects of glucose, insulin and IGFs on proliferation, migration, cell cycle progression and gene expression of the IGF system. Growth of colon cancer cells originating from a Dukes’ stage A was glucose-dependent, whereas growth of cancer cells from Dukes’ stage B, C and D was glucose-independent. Stimulatory effects of insulin and IGFs on cell growth were observed only in colon cancer cells originating from Dukes’ stage C and D. IGF-II stimulated migration in Dukes’ stage B cells only. The growth stimulatory effects in Dukes’ stage C and D colorectal cancer cells were accompanied by G2/M arrest and associated with an increased IGF-IR/IGF-II receptor ratio. In conclusion, our in vitro data suggest that the stimulating effects of glucose, IGFs and insulin on proliferation differ between colorectal cancer cells from early and late Dukes’ stages. Stimulatory effects of glucose on proliferation appear predominantly present in stage Dukes’ stage A colorectal cancer cells, while in contrast growth factor-mediated stimulation of cell proliferation is more pronounced in Dukes’ late stage (metastasized) colorectal cancer cells. Moreover, our study suggests that a stringent glucose control may be important to control tumor growth in early stages of colorectal cancer, while inhibition of the endocrine actions of the IGFs and insulin become more important in the late (metastasized) stages of colorectal cancer to restrain growth of colon cancer cells.


Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Sign in / Sign up

Export Citation Format

Share Document