apoptosis detection
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 41)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 422-426
Author(s):  
Mi Li ◽  
Yanqin Ji

This study assesses the therapeutic effect of propranolol on cervical cancer and its mechanism. Propranolol’s effect on cervical cancer was evaluated by MTT, Western blotting, flow cytometry and colony formation. By searching Drug Bank and String, cGMP/PKG signaling might be downstream targets of propranolol for subsequent analysis. Our results found that propranolol could significantly inhibit Hela and SiHA cell vitality and clone formation in a dose dependent manner. Further, Annexin V-PE/7-AAD Apoptosis Detection assay showed that propranolol could increase Hela and SiHA cell apoptosis. Finally, propranolol attenuated the phosphorylation level of VASP at Ser239 which is critical for PKG activation. In conclusion, propranolol suppressed cervical cancer cell proliferation via inhibition of cGMP/PKG signaling, which provides an affordable and effective method for cervical cancer remedy.


2022 ◽  
Author(s):  
Pei Xie ◽  
liying Zhang ◽  
Hui Shen ◽  
Hang Wu ◽  
Jiulong Zhao ◽  
...  

Abstract Exogenous antioxidant materials mimicking endogenous antioxidant systems are commonly used for the treatment of oxidative stress-induced injuries. Thus, artificial enzymes have emerged as promising candidates for balancing and treating the dysregulation of redox homeostasis in vivo. Herein, a one-pot hydrothermal strategy for the facile preparation of MoSe2@polyvinylpyrrolidone (PVP) nanoparticles (NPs) is reported. The synthesized NPs were biodegradable due to their exposure to oxygen and exhibited high stability. Moreover, they effectively mimicked various naturally occurring enzymes (including catalase, superoxide dismutase, peroxidase, and glutathione peroxidase) and scavenged free radicals, such as 3-ethylbenzothiazoline-6-sulfonic acid, ·OH, ·O2−, and 1,1-diphenyl-2-picrylhydrazyl radical. Further apoptosis detection studies revealed that MoSe2@PVP NPs significantly increased the cell survival probability in H2O2 in a concentration-dependent manner. The cytoprotective effect of MoSe2@PVP NPs was explored for an animal model of acute pancreatitis, which confirmed its remarkable therapeutic efficacy. Owing to the biodegradable and biocompatible nature of MoSe2@PVP NPs, the findings of this work can stimulate the development of other artificial nanoenzymes for antioxidant therapies.


2022 ◽  
Vol 8 ◽  
Author(s):  
Guoquan Chen ◽  
Ziyang Tan ◽  
Yansheng Liu ◽  
Tingting Weng ◽  
Liqun Xia ◽  
...  

Fish nocardiosis is a chronic, systemic, granulomatous disease in aquaculture. Nocardia seriolae has been reported to be one of the main pathogenic bacteria of fish nocardiosis. There are few studies on the associated virulence factors and pathogenesis of N. seriolae. Alanine dehydrogenase (ALD), which may be a secreted protein, was discovered by analysis using bioinformatics methods throughout the whole genomic sequence of N. seriolae. Nevertheless, the roles of ALD and its homologs in the pathogenesis of N. seriolae are not demonstrated. In this study, the function of N. seriolae ALD (NsALD) was preliminarily investigated by gene cloning, host cell subcellular localization, secreted protein identification, and cell apoptosis detection. Identification of the extracellular products of N. seriolae via mass spectrometry (MS) analysis revealed that NsALD is a secreted protein. In addition, subcellular localization of NsALD-GFP recombinant protein in fathead minnow (FHM) cells showed that the strong green fluorescence co-localized with the mitochondria. Moreover, apoptosis assays demonstrated that the overexpression of NsALD induces apoptosis in FHM cells. This study may lay the foundation for further exploration of the function of NsALD and facilitate further understanding of the pathogenic mechanism and the associated virulence factors of N. seriolae.


APOPTOSIS ◽  
2021 ◽  
Author(s):  
Yueling Zhang ◽  
Juan Hu ◽  
Meijuan Yu ◽  
Zhirong Wang ◽  
Hucheng Qing ◽  
...  

2021 ◽  
Vol 2 (9) ◽  
pp. 745-767
Author(s):  
Maha J Hashim

Apoptosis or programmed cell death is a standard physiological mechanism. It is essential to control the number of cells, balance cell division and cell death, regulate the immune system, and eliminate pathogen-infected cells. Apoptosis entailed a different investigation to determine related biochemical reactions such as activated caspase, Reactive Oxygen Species (ROS), Lipid Peroxidation (LPO), and Evaluation of Glutathione Content (GSH) by using different techniques. HepG2 cells were exposed to +/- 0.4 and 0.8 mM t-BHP for specific times to induce toxicity for apoptosis detection. We aim to investigate the mechanism of cell death in treated HepG2 with t-BHP under consideration of the conditions of the cytoprotection assay. Results showed no strong evidence for apoptosis, although caspase-3 activity increased significantly (p ≤ 0.05) in treated HpG2 cells with 0.8 mM t-BHP at 150 minutes. The weak proof for apoptosis may attribute to the participation of Calpain through the cross-talk in blocking the caspase- activation. Similarly, we obtained significant ROS and lipid peroxidation increases in treated HepG2 cells with 0.8 mM t-BHP (p ≤ 0.05 and 0.01 respectively) at 150 minutes. Moreover, reported a (non-significant) decline in GSH amounts. Treatment of the cells with Q and I3C under the conditions used in the cytoprotection study prevented the weak activation of caspase-3 identified by western blot.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2653
Author(s):  
Adam Wawrzynkiewicz ◽  
Wioletta Rozpedek-Kaminska ◽  
Grzegorz Galita ◽  
Monika Lukomska-Szymanska ◽  
Barbara Lapinska ◽  
...  

There is no consensus in the literature regarding the potential toxicity of universal dental adhesives (UDA). Being used in close proximity to the pulp, their biocompatibility should be an important factor in dental research. The aim of the present study was to evaluate the biocompatibility of UDA in an in vitro model. The study was performed using a monocyte/macrophage peripheral blood SC cell line (ATCC CRL-9855) on four specific UDA, namely: All-Bond Universal (Bisco); CLEARFIL Universal Bond Quick (Kuraray); G-Premio BOND (GC); Single Bond Universal (3M ESPE). The cytotoxicity of the investigated UDA was measured using the XTT colorimetric assay. The genotoxicity of the analyzed compounds was evaluated using an alkaline version of the comet assay. Furthermore, flow cytometry (FC) apoptosis detection was performed using the FITC Annexin V Apoptosis Detection Kit I. FC cell-cycle arrest assessment was performed using propidium iodide staining. The study observed significant differences in the toxicity of the UDA that were tested, as G-Premio BOND showed significant in vitro toxicity in all of the tests performed, while All-Bond Universal, CLEARFIL Universal Bond Quick and Single Bond Universal did not present any significant toxic effects toward SC cell line. The in vitro toxicity of UDA should be taken into consideration prior to in vivo and clinical studies. The flow cytometry could improve the accuracy of dental materials research and should be incorporated into the standardization criteria.


Cell Cycle ◽  
2021 ◽  
pp. 1-8
Author(s):  
Maojuan Guo ◽  
Bin Lu ◽  
Jiali Gan ◽  
Shuangcui Wang ◽  
Xijuan Jiang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jing Wang ◽  
Zhichun Dong ◽  
Liyin Lou ◽  
Lijuan Yang ◽  
Jingying Qiu

At present, there are few reports concerning the relationship between miR-122 and diabetes. In addition, the effect of miR-122 on streptozotocin- (STZ-) induced oxidative damage in INS-1 cells remains unclear. The present study aimed to investigate the role and modulatory mechanisms involving miR-122 in diabetes. STZ was used to induce INS-1 cell damage. Reverse transcription-quantitative PCR was used to investigate the expression of miR-122. A TUNEL cell apoptosis detection kit was used to detect apoptosis. Intracellular ROS levels were determined using dichlorofluorescein-diacetate. The activities of insulin secretion, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) were measured using ELISA kits. Western blotting was used to measure the expression levels of Bax, Bcl-2, PI3K, p-PI3K, caspase-3 and caspase-9, cleaved-caspase-3 and cleaved-caspase-9, AKT, and p-AKT. Then, LY294002 (LY, PI3K inhibitor) was used to treat INS-1 cells, and oxidative stress and apoptosis were measured. The results showed that STZ-induced inhibitory effects on insulin secretion were mitigated by miR-122 inhibitor, and the activities of SOD, CAT, and GSH-px were also increased. Furthermore, miR-122 inhibitor inhibited apoptosis and oxidative stress in STZ-induced INS-1 cells. Finally, the addition of LY increased insulin levels; reduced the activities of SOD, CAT, and GSH-px; and promoted apoptosis in STZ-induced INS-1 cells. In conclusion, interference with miR-122 can inhibit oxidative stress and apoptosis in STZ-induced INS-1 cells, involving a mechanism of action related to the PI3K/AKT pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dong-hua Bin ◽  
Shi-ying Zhang ◽  
Min Zhan ◽  
Ling Li ◽  
Ying-qiu Li ◽  
...  

Background: Ureaplasma urealyticum (UU) infection is the most common cause of male infertility. Zhibai Dihuang Decoction (ZBDHD) can improve the rate of forwarding motility sperm, sperm deformity rate, seminal plasma zinc and refined berry sugar levels.Methods: The potential targets of ZBDHD are obtained from The Encyclopedia of Traditional Chinese Medicine (ETCM). Orchitis-related targets were collected from the Genecards and OMIM databases. The Cytoscape and the Database for Annotation, Visualization and Integrated Discovery (DAVID) were utilized to construct and analyzed the networks. Finally, a rat model of orchitis caused by UU infection was used to detect related indicators of mitochondrial energy metabolism using TUNEL apoptosis detection technology, loss cytometry, Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) and Western Blot.Results: A total of 795 ZBDHD targets and 242 orchitis-related targets were obtained. The “ZBDHD- orchitis PPI network” was constructed and analyzed. ZBDHD can regulate signaling pathways and biological processes related to mitochondrial energy metabolism. The results of experimental studies have shown that ZBDHD maintains the integrity of sperm mitochondrial respiratory chain function by enhancing mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities, promotes the synthesis of mitochondrial ATP, and improves sperm energy supply, thereby improving the motility, vitality and survival rate of sperm, and effectively improving the quality of semen in UU-infected rats (p < 0.05).Conclusion:This study discovered the multi-pathway mechanism of ZBDHD intervention in UU-induced orchitis through integrated pharmacological strategies, which provides a reference for further research on the mechanism of ZBDHD intervention in orchitis in the direction of mitochondrial energy metabolism.


Sign in / Sign up

Export Citation Format

Share Document