Advanced heat transfer fluids for direct molten salt line-focusing CSP plants

2018 ◽  
Vol 67 ◽  
pp. 69-87 ◽  
Author(s):  
Alexander Bonk ◽  
Salvatore Sau ◽  
Nerea Uranga ◽  
Marta Hernaiz ◽  
Thomas Bauer
2019 ◽  
Vol 111 ◽  
pp. 01054 ◽  
Author(s):  
F. Mertkan Arslan ◽  
Hüseyin Günerhan

In this study energetic and exergetic performances of parabolic trough collector is theoretically investigated by using 120 l/min synthetic ‘’Dowtherm A’’ oil , 1200 l/min Air at 100 bar (10 MPa) and 150 l/min molten salt which is mixture of 60 wt% sodium nitrate (NaNO3) and 40 wt% potassium nitrate (KNO3) which are widely used as heat transfer fluids. Fluids performance comparisons were performed with the LS-2 module, which is used with vacuum in annulus and Cermet as a selective coating. LS-2 module has 7.8 m receiver length and is 39 m2 aperture area. As a result, the maximum exergy efficiency of the molten salt, synthetic oil, Air to be 41.19% at 422 °C, 40.82% at 400 °C, 40.33% at 402 °C, respectively. The maximum exergy of air is higher than other working fluids up to 310 ° C but after about 310 ° C the exergy of the molten salt is higher than the others. The molten salt has the best energy efficiency at its operating temperatures (250 °C to 550 °C) than other working fluids.


2016 ◽  
Vol 93 ◽  
pp. 967-977 ◽  
Author(s):  
Qibin Liu ◽  
Zhang Bai ◽  
Jie Sun ◽  
Yuejun Yan ◽  
Zhichao Gao ◽  
...  

2013 ◽  
Vol 815 ◽  
pp. 415-422 ◽  
Author(s):  
Xiao Min Cheng ◽  
Chuang Zhu ◽  
Han Zhang ◽  
Xian Jie Yang

mproving the thermophysical properties of heat transfer fluid is always a research hotspot and difficult subject in the application of solar energy for medium and high temperature. The research and application of these heat transfer fluid, including steam, heat transfer oil, molten salt, air, liquid alloy and nanofluids, were summarized in this paper. After comparing their characteristics, it is found that molten salt, air and liquid alloy have greater application and development prospects. Future research directions include extending the temperature span of operating condition, enhancing the efficiency of heat transfer and storage, lengthening service life and finding out the correlation between microstructure and related performance.


Author(s):  
Nathan P. Siegel ◽  
Robert W. Bradshaw ◽  
Joseph B. Cordaro ◽  
Alan M. Kruizenga

Nitrate salts have been used for decades in the concentrating solar power industry as heat transfer fluids and thermal storage media. For most of this time these inorganic fluids have been restricted to use in central receiver platforms due to the useful working temperature range of the most widely researched formulation, a near eutectic mixture of sodium and potassium nitrate, which melts at 220°C and is stable in air to nearly 580°C. Recent research efforts have led to the development of nitrate salt mixtures that melt at lower temperatures and are suitable for use in parabolic trough systems. These mixtures include three or more components and generally have melting points in the range of 100°C, with stability in air up to 500°C. The design of parabolic trough systems that utilize molten salt heat transfer fluids is complicated by the fact that the properties of these fluids are considerably different from the organic heat transfer fluids that they may replace. In this paper we present measured thermophysical property data for several commercial and non-commercial molten salt mixtures that can be used in the system level design of parabolic trough and central receiver power plants. The data presented include heat capacity, density, thermal conductivity, viscosity, all as a function of temperature, along with melting point and thermal stability limits. Some properties, such as density, can be predicted by simple mixing rules. The dependence of viscosity was strongly influenced by the composition of the molten salts and, particularly, the proportion of calcium nitrate.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Kevin Coscia ◽  
Spencer Nelle ◽  
Tucker Elliott ◽  
Satish Mohapatra ◽  
Alparslan Oztekin ◽  
...  

One of the major challenges preventing the concentrated solar power (CSP) industry from occupying a greater portion of the world's energy portfolio are unattractive start up and operating costs for developers and investors. In order to overcome these reservations, plant designers must be able to achieve greater efficiencies of power production. Molten salt nitrates are ideal candidates for CSP heat transfer fluids and have been proposed to offer significant performance advantages over current silicone based oil heat transfer fluids. Ternary molten salt nitrates offer high operating temperatures while maintaining low freezing temperatures. However, a shortage of important thermophysical property data exists for these salts. Previous work has shown the ternary compositions of LiNO3–NaNO3–KNO3 salts offer the widest possible temperature range for use in a CSP system. The present work contains data for the viscosity, specific heat, and latent heat of some mixtures of these salts at various temperatures, providing vital information for plant designers to optimize power generation and attract future investment to CSP systems.


Solar Energy ◽  
2019 ◽  
Vol 191 ◽  
pp. 435-448 ◽  
Author(s):  
Tianle Liu ◽  
Xinhai Xu ◽  
Wenrui Liu ◽  
Xiaoru Zhuang

Author(s):  
Robert W. Bradshaw ◽  
Nathan P. Siegel

Thermal energy storage can enhance the utility of parabolic trough solar power plants by providing the ability to match electrical output to peak demand periods. An important component of thermal energy storage system optimization is selecting the working fluid used as the storage media and/or heat transfer fluid. Large quantities of the working fluid are required for power plants at the scale of 100-MW, so maximizing heat transfer fluid performance while minimizing material cost is important. This paper reports recent developments of multi-component molten salt formulations consisting of common alkali nitrate and alkaline earth nitrate salts that have advantageous properties for applications as heat transfer fluids in parabolic trough systems. A primary disadvantage of molten salt heat transfer fluids is relatively high freeze-onset temperature compared to organic heat transfer oil. Experimental results are reported for formulations of inorganic molten salt mixtures that display freeze-onset temperatures below 100°C. In addition to phase-change behavior, several properties of these molten salts that significantly affect their suitability as thermal energy storage fluids were evaluated, including chemical stability and viscosity. These alternative molten salts have demonstrated chemical stability in the presence of air up to approximately 500°C in laboratory testing and display chemical equilibrium behavior similar to Solar Salt. The capability to operate at temperatures up to 500°C may allow an increase in maximum temperature operating capability vs. organic fluids in existing trough systems and will enable increased power cycle efficiency. Experimental measurements of viscosity were performed from near the freeze-onset temperature to about 200°C. Viscosities can exceed 100 cP at the lowest temperature but are less than 10 cP in the primary temperature range at which the mixtures would be used in a thermal energy storage system. Quantitative cost figures of constituent salts and blends are not currently available, although, these molten salt mixtures are expected to be inexpensive compared to synthetic organic heat transfer fluids. Experiments are in progress to confirm that the corrosion behavior of readily available alloys is satisfactory for long-term use.


Sign in / Sign up

Export Citation Format

Share Document