Research and Application of Heat Transfer Fluids in Solar Thermal Power

2013 ◽  
Vol 815 ◽  
pp. 415-422 ◽  
Author(s):  
Xiao Min Cheng ◽  
Chuang Zhu ◽  
Han Zhang ◽  
Xian Jie Yang

mproving the thermophysical properties of heat transfer fluid is always a research hotspot and difficult subject in the application of solar energy for medium and high temperature. The research and application of these heat transfer fluid, including steam, heat transfer oil, molten salt, air, liquid alloy and nanofluids, were summarized in this paper. After comparing their characteristics, it is found that molten salt, air and liquid alloy have greater application and development prospects. Future research directions include extending the temperature span of operating condition, enhancing the efficiency of heat transfer and storage, lengthening service life and finding out the correlation between microstructure and related performance.

2021 ◽  
Vol 108 ◽  
pp. 103309
Author(s):  
Tatiane Tobias da Cruz ◽  
José A. Perrella Balestieri ◽  
João M. de Toledo Silva ◽  
Mateus R.N. Vilanova ◽  
Otávio J. Oliveira ◽  
...  

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
J. Ignacio Ortega ◽  
J. Ignacio Burgaleta ◽  
Félix M. Téllez

Of all the technologies being developed for solar thermal power generation, central receiver systems (CRSs) are able to work at the highest temperatures and to achieve higher efficiencies in electricity production. The combination of this concept and the choice of molten salts as the heat transfer fluid, in both the receiver and heat storage, enables solar collection to be decoupled from electricity generation better than water∕steam systems, yielding high capacity factors with solar-only or low hybridization ratios. These advantages, along with the benefits of Spanish legislation on solar energy, moved SENER to promote the 17MWe Solar TRES plant. It will be the first commercial CRS plant with molten-salt storage and will help consolidate this technology for future higher-capacity plants. This paper describes the basic concept developed in this demonstration project, reviewing the experience accumulated in the previous Solar TWO project, and present design innovations, as a consequence of the development work performed by SENER and CIEMAT and of the technical conditions imposed by Spanish legislation on solar thermal power generation.


Author(s):  
Antonio Manzalini ◽  
Nermin Brgulja ◽  
Roberto Minerva ◽  
Corrado Moiso

Increasing complexity, heterogeneity, and dynamism of current networks (telecommunications, ICT, and Internet) are making current computational and communication infrastructures brittle, inefficient, and almost unmanageable. As a matter of fact, computing and storage are progressively embedded in all sorts of nodes and devices that are interconnected through a variety of (wireless and wired) technologies in Networks of Networks (NoNs). Dynamicity, pervasivity, and interconnectivity of future NoNs will increase the complexity of their management, control, and optimization more and more, and will open new challenges for service delivery in such environments. Autonomic communications principles and technologies can provide effective computing and networking solutions overcome these bottlenecks and to foster such challenging evolution. This chapter presents the main concepts of an autonomic communications toolkit designed and developed in the EU project CASCADAS for creating and supervising service networking ecosystems, structured as ensembles of distributed and cooperating autonomic components. Moreover, it describes several use-cases developed for its validation and demonstration and reports the experimental results to assess the toolkit performances. A brief overview of future research directions concludes the chapter.


2005 ◽  
Author(s):  
Andrew D. Yablon

Several recent technological breakthroughs have led to a renaissance of interest in optical fibers, which are now widely used for applications as diverse as telecommunications, medicine, and sensing. Contemporary optical fiber technology is inherently multidisciplinary, inter-relating fields as diverse as glass science, mechanical engineering, and optics. This paper reviews several aspects of silica optical fiber technology in which thermal transport plays a critical role. Future research directions are discussed.


Author(s):  
Joshua M. Christian ◽  
Clifford K. Ho

Solar Two was a demonstration of the viability of molten salt power towers. The power tower was designed to produce enough thermal power to run a 10-MWe conventional Rankine cycle turbine. A critical component of this process was the solar tower receiver. The receiver was designed for an applied average heat flux of 430 kW/m2 with an outlet temperature of 565°C (838.15 K). The mass flow rate could be varied in the system to control the outlet temperature of the heat transfer fluid, which was high temperature molten salt. The heat loss in the actual system was calculated by using the power-on method which compares how much power is absorbed by the molten salt when using half of the heliostat field and then the full heliostat field. However, the total heat loss in the system was lumped into a single value comprised of radiation, convection, and conduction heat transfer losses. In this study, ANSYS FLUENT was used to evaluate and characterize the radiative and convective heat losses from this receiver system assuming two boundary conditions: (1) a uniform heat flux on the receiver and (2) a distributed heat flux generated from the code DELSOL. The results show that the distributed-flux models resulted in radiative heat losses that were ∼14% higher than the uniform-flux models, and convective losses that were ∼5–10% higher due to the resulting non-uniform temperature distributions. Comparing the simulations to known convective heat loss correlations demonstrated that surface roughness should be accounted for in the simulations. This study provides a model which can be used for further receiver design and demonstrates whether current convective correlations are appropriate for analytical evaluation of external solar tower receivers.


2013 ◽  
Vol 805-806 ◽  
pp. 63-69 ◽  
Author(s):  
Di Wu ◽  
Shi Liu

Solar thermal power generation technology is the most feasible technology to compete with fossil fuels in the economy, and is considered to be one of the most promising candidates for providing a major share of the clean and renewable energy needed in the future. The appropriate heat transfer fluid and storage medium is a key technological issue for the future success of solar thermal technologies. Molten salt is one of the best heat transfer and thermal storage fluid for both parabolic trough and tower solar thermal power system. It is very important that molten salt heat transfer mechanisms are understood and can be predicted with accuracy. But studies on molten salts heat transfer are rare. This study will lay a foundation for the application of carbon nanotubes in molten salt which can remarkably improve the stability and capacity of thermal storage. Thermal analysis methods and scanning electron microscope (SEM) are utilized to provide a review of thermophysical properties and thermochemical characteristics of the MWCNTs-salt composite materials.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Kevin Coscia ◽  
Tucker Elliott ◽  
Satish Mohapatra ◽  
Alparslan Oztekin ◽  
Sudhakar Neti

Current heat transfer fluids for concentrated solar power applications are limited by their high temperature stability. Other fluids that are capable of operating at high temperatures have very high melting points. The present work is aimed at characterizing potential solar heat transfer fluid candidates that are likely to be thermally stable (up to 500 °C) with a lower melting point (∼100 °C). Binary and ternary mixtures of nitrates have the potential for being such heat transfer fluids. To characterize such eutectic media, both experimental measurements and analytical methods resulting in phase diagrams and other properties of the fluids are essential. Solidus and liquidus data have been determined using a differential scanning calorimeter over the range the compositions for each salt system and mathematical models have been derived using Gibbs Energy minimization. The Gibbs models presented in this paper sufficiently fit the experimental results as well as providing accurate predictions of the eutectic compositions and temperatures for each system. The methods developed here are expected to have broader implications in the identification of optimizing new heat transfer fluids for a wide range of applications, including solar thermal power systems.


2017 ◽  
Author(s):  
Mohammad Abutayeh ◽  
Yacine Addad ◽  
Anas Alazzam

A previously–developed model of a concentrating solar power plant has been modified to accommodate doping the heat transfer fluid with nano–particles. The model with its unalloyed heat transfer fluid has been validated with actual operating data beforehand. The thermo–physical properties of the heat transfer fluid were modified to account for the nano–particle doping. The nano–particle content in the heat transfer fluid was then varied to evaluate its influence on solar power generation. The model was run to simulate plant operation on four different days representing the four different seasons. As the nano–particle concentration was increased, heat losses were slightly reduced, transient warm up heat was increased, transient cool down heat was reduced, and the overall impact on power generation was trivial. Doping heat transfer fluids with nano–particles does not seem promising for solar thermal power generation from a performance perspective. Moreover, doping heat transfer fluids with nano–particles involves many other operational challenges such as sedimentation and abrasion.


Sign in / Sign up

Export Citation Format

Share Document