Seasonal patterns of the abundance of ground-dwelling arthropod guilds and their responses to livestock grazing in a semi-arid steppe

Pedobiologia ◽  
2021 ◽  
Vol 85-86 ◽  
pp. 150711
Author(s):  
Jianwei Cheng ◽  
Frank Yonghong Li ◽  
Xinmin Liu ◽  
Xinyu Wang ◽  
Dong Zhao ◽  
...  
2020 ◽  
Author(s):  
Tongrui Zhang ◽  
Frank Yonghong Li ◽  
Hao Wang ◽  
Lin Wu ◽  
Chunjun Shi ◽  
...  

Abstract Aims Nutrient resorption is a key plant nutrient conservation strategy, and its response to environmental and management changes is linked to nutrient cycling and production of ecosystems. Defoliation is a major pathway of mowing affecting plant nutrient resorption and production in grasslands, while the effect of defoliation timing has not been unexplored. The aim of this study was to examine the effect of defoliation timing on plant nutrient resorption and production in a steppe ecosystem. Methods We conducted a field experiment in a semi-arid steppe of Inner Mongolia including four treatments: early defoliation, peak defoliation, late defoliation and non-defoliation. We measured plant nitrogen (N) and phosphorus (P) resorption at species and community levels, and quantified plant N and P fluxes in resorption, litter return and hay output. Plant production in the mowing system was assessed by hay production and quality. Important Findings Peak and late defoliation, but not early defoliation, reduced plant community N and P resorption proficiency (RP); and late defoliation reduced N resorption efficiency (RE) but not P resorption efficiency. Peak and late defoliation, but not early defoliation, reduced plant nutrient resorption flux and litter nutrient return flux. Defoliation timing did not alter root nutrient accumulation as nutrient uptake from soil likely compensated the deficit of nutrient resorption. Peak defoliation had the highest hay production and quality, while early defoliation had the lowest. Our results provide new insights into the nutrient cycling in mowing grassland, and imply that the mowing timing can be used as a tool to mediate the balance between conservation and production of steppes, and the early mowing before plant peak biomass period is recommended for conservation of the steppes while keeping sustainable pastoral production.


2010 ◽  
Vol 24 (18) ◽  
pp. 2507-2519 ◽  
Author(s):  
Y. Zhao ◽  
S. Peth ◽  
X. Y. Wang ◽  
H. Lin ◽  
R. Horn

2002 ◽  
Vol 34 (6) ◽  
pp. 895-898 ◽  
Author(s):  
Fernando T Maestre ◽  
Mayte Huesca ◽  
Eli Zaady ◽  
Susana Bautista ◽  
Jordi Cortina

2020 ◽  
Vol 12 (6) ◽  
pp. 2239 ◽  
Author(s):  
Shougang Wang ◽  
Jiu Huang ◽  
Haochen Yu ◽  
Chuning Ji

The ecological integrity and biodiversity of steppes were destroyed under the long-term and high-intensity development of open-pit coal mines in China, causing desertification, steppe degradation, landscape function defect, and so on. As a source of species maintenance and dispersal, an ecological source is a key area for preservation in order to restore the ecological security pattern of the larger landscape. The purpose of this study was to establish a landscape key area recognition model to identify the landscape key areas (LKA) surrounding an open pit coalmine located in semi-arid steppe. This study takes the Yimin open pit mining area as a case study. We assessed Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) remote sensing images taken during the peak season of vegetation growth from July to August in 1999, 2006, 2011, and 2017. From these images, we identified the main landscape types and vegetation coverage grades in order to identify the ecological land. Next, we applied the three indices of Importance of Patch Connectivity, Habitat Quality, and Ecosystem Service Value to calculate the comprehensive results that identify ecological land. Finally, the ecological land quality results of different years are superimposed and averaged, and then Very Important Patch (VIMP), Important Patch (IMP), and General Patch (GEP) areas were used for LKA extraction. Our results showed LKA to cover 177.35 km2, accounting for 20.01% of the total study area. The landscape types identified as LKA are primarily grassland (47.37%), wetland (40.27%), and shrubland (11.88%), indicating that landscape type correlates strongly with its value as a landscape key area. The proposed landscape key area recognition model could enrich the foundations for ecological planning and ecological security pattern construction in order to support ecological protection and restoration in semi-arid steppe areas affected by coal mining.


2020 ◽  
Vol 448 (1-2) ◽  
pp. 265-276 ◽  
Author(s):  
Xinyu Wang ◽  
Frank Yonghong Li ◽  
Yanan Wang ◽  
Xinmin Liu ◽  
Jianwei Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document