resorption efficiency
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 38)

H-INDEX

15
(FIVE YEARS 2)

Phyton ◽  
2022 ◽  
Vol 91 (1) ◽  
pp. 185-196
Author(s):  
Yaoyi Zhang ◽  
Xiangyin Ni ◽  
Jing Yang ◽  
Siyi Tan ◽  
Shu Liao ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Baoming Du ◽  
Huawei Ji ◽  
Shirong Liu ◽  
Hongzhang Kang ◽  
Shan Yin ◽  
...  

Abstract Background Nutrient resorption is critical for plants toward balancing their nutritional requirements and adapting to environmental variabilities, which further impacts litter quality and nutrient cycling. However, the interannual variability of nutrient resorption under climate change remains unclear. Methods We investigated the five-year nutrient resorption efficiencies (NuRE, %) of 14 elements in three deciduous oak tree species (Quercus aliena var. acuteserrata, Q. glandulifera, and Q. variabilis) in a warm-temperate forest of Central China and assessed their relationships with interannual climate and soil factors. Results Nutrient resorption did not differ between species but varied significantly between different years. For each year, N, P, S, K, C, Mg, and Zn were preferentially resorbed in all of the oak species in contrast to Ca, Na, Mn, Ba, Al, Fe, Cu, which were to some extent discriminated. Among the 14 elements, the NuRE of C, N, P, S, Ca, and Mg was more sensitive to interannual climate variations in the three oak species. The carbon resorption efficiency was significantly increased during the driest year of the study (2014); N resorption efficiency was reduced with temperature; whereas N and P resorption efficiency initially decreased and then increased with precipitation. Moreover, the elements with higher NuREs typically had lower coefficient of variation (CV) in all three oak species. Conclusions Different oak species exhibited analogous nutrient conservation strategies in response to annual climate variabilities, and interannual climate variations strongly impacted plant nutrient resorption. Deciduous plants may establish a tradeoff mechanism to rebalance somatic nutrients for regrowth at the end of the growing season.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 545
Author(s):  
Thomas E. Marler

Greater knowledge concerning the interspecific diversity of the plant leaf ionome is required to effectively understand the spatiotemporal dynamics of biogeochemistry, but Micronesia has been ignored in this literature. The objectives of this study were to quantify the leaf ionome, resorption efficiency, and stoichiometry of leaves from 25 plant species representing Guam’s coastal karst forests. Carbon and nitrogen were quantified by dry combustion, and other minerals and metals were quantified by spectrometry. Nitrogen and calcium concentrations in Guam’s green leaves exceeded the published global means, but manganese and copper concentrations were less than the global means. The remainder of the elements were within the expected ranges. Nutrient resorption rates exhibited a decreasing order of potassium > phosphorus > nitrogen > zinc > copper. The term “accretion efficiency” is introduced to describe the accumulation of an element throughout leaf aging and senescence, and calcium and iron exhibited substantial accretion efficiency in this study. Stoichiometry relations indicated that Guam’s karst forest is most limited by phosphorus and then secondarily limited by nitrogen, although several individual taxa exhibited co-limitation by potassium. Five of the species are officially listed on extinction threat lists. Of these, the Malvaceae tree Heriteria longipetiolata exhibited leaf traits depicting the most recalcitrant litter characteristics, and the Fabaceae tree Serianthes nelsonii exhibited leaf traits depicting the most labile litter characteristics. The contributions of these two tree species to spatiotemporal diversity in biogeochemistry appear to be profound, indicating species recovery efforts are of paramount importance for maintaining ecosystem function and soil heterotroph biodiversity in northern Guam.


2021 ◽  
Vol 13 (17) ◽  
pp. 9736
Author(s):  
Yini Han ◽  
G. Geoff Wang ◽  
Tonggui Wu ◽  
Wenjing Chen ◽  
Yongliang Ji ◽  
...  

In managed orchards, fertilization brings out not only high productivity expectations but also severe environmental pollution. Because economic profit takes priority over environmental cost, increasing amounts of fertilizer have been used in mature subtropical Torreya grandis orchards. However, given the magnitude of global nitrogen deposition, it’s worth considering whether heavy fertilizer treatment is necessary. To elucidate the balance between T. grandis nutrient demands and fertilizer supply, we determined the C, N, and P concentrations of foliar and soil ([C], [N], [P]) at 9 orchards undergoing long-term fertilizer treatments in two scenarios of N and N + P addition with different intensity. After documenting the dynamic variation of plant growth, nutrients characteristic, and the corresponding resorption efficiency, we found that excessive N addition interfered T. grandis’ sensibility to P availability in this N-enrichment area, leading to an increasing foliar [P] and resorption efficiency (PRE) and decoupling plant C:N:P ratios. As a result, enhanced fertilizer supply failed to improve carbon accumulation, plant growth, and yield effectively. These results demonstrate that extra fertilization in the N-saturated study area highly reduced the economic and ecological efficiency of fertilizers. Thus, our research suggests that N addition in the studied orchards should be rejected, and we recommend organic management as a more conducive method to achieve sustainable development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Wang ◽  
G. Geoff Wang ◽  
Lining Song ◽  
Risheng Zhang ◽  
Tao Yan ◽  
...  

Nutrient resorption is an important strategy for nutrient conservation, particularly under conditions of nutrient limitation. However, changes in nutrient resorption efficiency with stand development and the associated correlations with ecological stoichiometry and homeostasis are poorly understood. In the study, the authors measured carbon (C), nitrogen (N), and phosphorus (P) concentrations in soil and in green and senesced needles along a chronosequence of Mongolian pine (Pinus sylvestris var. mongolica) plantations (12-, 22-, 31-, 42-, 52-, and 59-year-old) in Horqin Sandy Land of China, calculated N and P resorption efficiency (NRE and PRE, respectively), and homeostasis coefficient. The authors found that soil organic C and total N concentrations increased, but soil total P and available P concentrations decreased with stand age. Green needle N concentrations and N:P ratios as well as senesced needle C:N ratios, NRE, and PRE exhibited patterns of initial increase and subsequent decline with stand age, whereas green needle C:N ratios and senesced needle N concentrations, and N:P ratios exhibited the opposite pattern. NRE was positively correlated with N concentration and N:P ratio, but negatively correlated with C:N ratio in green needles, whereas the opposite pattern was observed in senesced needles. PRE was negatively correlated with senesced needle P concentration, soil-available N concentration, and available N:P ratio. The homeostatic coefficient of N:P was greater when including all stand ages than when including only those younger than 42 years. These findings indicate that tree growth may change from tending to be N limited to tending to be P limited along the Mongolian pine plantation chronosequence. Nutrient resorption was coupled strongly to tree growth and development, whereas it played a lesser role in maintaining stoichiometric homeostasis across the plantation chronosequence. Therefore, adaptive fertilization management strategies should be applied for the sustainable development of Mongolian pine plantations.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1034
Author(s):  
Hiroyuki Tobita ◽  
Mitsutoshi Kitao ◽  
Akira Uemura ◽  
Hajime Utsugi

To test the effects of elevated CO2 and soil N deficiency on N resorption efficiency (NRE) from senescing leaves in two non-N2-fixing deciduous broadleaved tree species, Japanese oak (Quercus mongolica var. grosseserrata Blume) and Painted maple (Acer mono Maxim. var. glabrum (Lév. Et Van’t.) Hara), potted seedlings were grown in a natural daylight phytotron with either ambient or elevated CO2 conditions (36 Pa and 72 Pa CO2) and with two levels of N (52.5 and 5.25 mg N pot−1 week−1 for high N and low N, respectively). We examined the N content (Nmass) of mature and senescent leaves, as well as photosynthesis and the growth of plants, and calculated both the mass-based NRE (NREmass) and leaf area-based NRE (NREarea). In both species, the Nmass of mature leaves decreased with high CO2 and low N, whereas the leaf mass per area (LMA) increased under elevated CO2, regardless of N treatments. In Q. mongolica, both the maximum rate of carboxylation (Vcmax) and the maximum electron transport rate (Jmax) were reduced by elevated CO2 and low N, but Vcmax exhibited an interactive effect of N and CO2 treatments. However, in A. mono, both the Vcmax and Jmax decreased under elevated CO2, regardless of N treatments. The partitioning of N for the photosynthetic function within leaves was also significantly decreased by elevated CO2 in both species and increased under low N in A. mono. The Nmass of senesced leaves decreased under low N in both species and exhibited an increase (Q. mongolica) or no effect (A. mono) by elevated CO2. The NREarea of Q. mongolica was affected by CO2 and N treatments, with a decrease under elevated CO2 compared to ambient CO2 and under low N compared to high N. The NREarea of A. mono was also affected by CO2 and N treatments and decreased under elevated CO2; however, unlike in the case of Q. mongolica, it increased under low N. We speculate that these interspecific differences in the responses of leaf N allocation, indicated by the photosynthetic (Vcmax and Jmax) and morphological (LMA) responses to elevated CO2, may have affected the NRE during defoliation under high CO2 and soil N-deficient conditions.


2021 ◽  
Author(s):  
Baoming Du ◽  
Huawei Ji ◽  
Shirong Liu ◽  
Hongzhang Kang ◽  
Shan Yin ◽  
...  

Abstract Background:Nutrient resorption is critical for plants toward balancing their nutritional requirements and adapting to environmental variabilities, which further impacts litter quality and nutrient cycling. However, the interannual variability of nutrient resorption under climate change remains unclear.Methods: We investigated the five-year nutrient resorption efficiencies (NuRE, %) of 14 elements in three deciduous oak tree species, Quercus aliena var. acuteserrata, Q. glandulifera, and Q. variabilis species in a warm-temperate forest of Central China, and assessed their relationships with interannual climate and soil factors. Results:Nutrient resorption did not differ between species but varied significantly between different years. For each year, nucleic acid-protein elements (N, P, S, and K) were preferentially resorbed in all of the oak species in contrast to photosynthesis-enzymic (C, Mg, and Zn) and structural (Ca, Na, Mn, and Ba) elements, which were to some extent discriminated, and toxic (Al and Fe) elements that were completely excluded. Among the 14 elements, the NuRE of N, P, S, Ca, and Mg was closely associated with interannual climate in the three oak species, showing N and S resorption efficiency were reduced with temperature, while N, P, and S resorption efficiency initially decreased and then increased with precipitation. Moreover, the elemental coefficient variations between different years generally decreased with higher NuREs in all three oak species.Conclusions: Different oak species have analogous nutrient conservation strategies in response to annual climate variability, and interannual climate variations strongly impacted plant nutrient resorption. Deciduous plants may establish a trade-off mechanism to rebalance somatic nutrients for regrowth at the end of growing season.


2021 ◽  
Author(s):  
Jiaxi Wang ◽  
Mercedes Uscola ◽  
Guolei Li

Abstract Aims Soil fertility and resorption of leaf compounds in the fall can influence resource buildup in plants. However, whether intraspecific differences in seedling size can affect nutrient reserve buildup is unknown. This study examined the effects of seedling size and fall fertilization on the uptake and resorption of nitrogen (N), as well as the allocation of non-structural carbohydrates (NSC) and N in cultivated Quercus variabilis Blume. Methods After the formation of terminal buds (T1), seedlings were stratified into small (shoot height < 30 cm) and large seedlings. During the hardening period, seedlings were treated with three different rates of 15N-enriched fertilizer (0, 12, or 24 mg N seedling− 1) and monitored until leaf fall (T2). Results Small seedlings had lower N resorption efficiency and resorbed proportionally less N than large seedlings. Fall fertilization notably improved N and NSC reserves, without reducing N resorption efficiency. Large seedlings allocated proportionally less N to leaves than small seedlings although both sizes seedlings absorbed similar amounts of N from fall fertilization. The priority perennial organ for NSC allocation was roots, while N allocation was dependent on the phenological growth stage of the seedling. Roots were prioritized during the rapid growth phase, while stems were prioritized during the hardening period. Conclusions Under same fertilizer regime during the growth phase, large seedlings tends to have lower N concentration and have higher resorption efficiency compare to small seedlings, fall fertilization can increase N storage in large seedlings and NSC levels in both seedling sizes, without affecting growth.


Sign in / Sign up

Export Citation Format

Share Document