scholarly journals GK-rats respond to gastric bypass surgery with improved glycemia despite unaffected insulin secretion and beta cell mass

Peptides ◽  
2021 ◽  
Vol 136 ◽  
pp. 170445
Author(s):  
Michael G. Miskelly ◽  
Liliya Shcherbina ◽  
Ann-Helen Thorén Fischer ◽  
Mia Abels ◽  
Andreas Lindqvist ◽  
...  
Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2295-PUB
Author(s):  
TERESA MEZZA ◽  
PIETRO MANUEL FERRARO ◽  
GIANFRANCO DI GIUSEPPE ◽  
CHIARA MARIA ASSUNTA CEFALO ◽  
SIMONA MOFFA ◽  
...  

Diabetologia ◽  
2018 ◽  
Vol 62 (1) ◽  
pp. 99-111 ◽  
Author(s):  
James Cantley ◽  
Aimee Davenport ◽  
Laurène Vetterli ◽  
Nandor J. Nemes ◽  
P. Tess Whitworth ◽  
...  

2015 ◽  
Vol 228 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Xinrong Zhou ◽  
Bangguo Qian ◽  
Ning Ji ◽  
Conghui Lui ◽  
Zhiyuan Liu ◽  
...  

Gastric bypass surgery produces clear antidiabetic effects in a substantial proportion of morbidly obese patients. In view of the recent trend away from ‘bariatric’ surgery and toward ‘metabolic’ surgery, it is important to elucidate the enhancing effect of bypass surgery on pancreatic β-cell mass, which is related to diabetes remission in non-obese patients. We investigated the effects of gastric bypass surgery on glycemic control and other pancreatic changes in a spontaneous non-obese type 2 diabetes Goto-Kakizaki rat model. Significant improvements in postprandial hyperglycemia and plasma c-peptide level were observed when glucose was administered orally post-surgery. Other important events observed after surgery were enhanced first phase insulin secretion in a in site pancreatic perfusion experiment, pancreatic hyperplasia, improved islet structure (revealed by immunohistochemical analysis), striking increase in β-cell mass, slight increase in ratio of β-cell area to total pancreas area, and increased number of small islets closely related to exocrine ducts. No notable changes were observed in ratio of β-cell to non-β endocrine cell area, β-cell apoptosis, or β-cell proliferation. These findings demonstrate that gastric bypass surgery in this rat model increases endocrine cells and pancreatic hyperplasia, and reflect the important role of the gastrointestinal system in regulation of metabolism.


Diabetologia ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 155-155
Author(s):  
M. O. Larsen ◽  
C. F. Gotfredsen ◽  
M. Wilken ◽  
R. D. Carr ◽  
N. P�rksen ◽  
...  

2009 ◽  
Vol 21 (9) ◽  
pp. 14
Author(s):  
K. L. Gatford

Diabetes occurs when insulin secretion fails to increase sufficiently to compensate for developing insulin resistance. This implies that the increased risk of diabetes in adults who were small at birth reflects impaired insulin secretion as well as their well-known insulin resistance. More recently, direct evidence has been obtained that adults and children who were growth-restricted before birth secrete less insulin than they should, given their level of insulin resistance. Our research group is using the placentally-restricted (PR) sheep to investigate the mechanisms underlying impaired insulin action (sensitivity and secretion) induced by poor growth before birth. Like the intra-uterine growth-restricted (IUGR) human, the PR sheep develops impaired insulin action by adulthood, but has enhanced insulin sensitivity in infancy, associated with neonatal catch-up growth1, 2. Impaired insulin action begins to develop in early postnatal life, where although basal insulin action is high due to enhanced insulin sensitivity, maximal glucose-stimulated insulin action is already impaired in males3. Our cellular and molecular studies have identified impaired beta-cell function rather than mass as the likely cause of impaired insulin secretion, and we have reported a novel molecular defect in the calcium channels involved in the insulin secretion pathway in the pancreas of these lambs3. Upregulation of IGF-II and insulin receptor are implicated as key molecular regulators of beta-cell mass in the PR lamb3. By adulthood, both basal and maximal insulin action are profoundly impaired in the male lamb who was growth-restricted at birth2. These studies suggest therapies to prevent diabetes in the individual who grew poorly before birth should target beta-cell function, possibly in addition to further increasing beta-cell mass, to improve insulin secretion capacity, and its ability to increase in response to development of insulin resistance. We are now using the PR sheep to test potential therapies, since the timing of pancreatic development and hence exposure to a growth-restricting environment, is similar to that of the human.


Obesity ◽  
2011 ◽  
Vol 19 (7) ◽  
pp. 1420-1426 ◽  
Author(s):  
Miriam Promintzer-Schifferl ◽  
Gerhard Prager ◽  
Christian Anderwald ◽  
Martina Mandl ◽  
Harald Esterbauer ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Lukáš Alán ◽  
Tomáš Olejár ◽  
Monika Cahová ◽  
Jaroslav Zelenka ◽  
Zuzana Berková ◽  
...  

Reduced beta cell mass in pancreatic islets (PI) of Goto-Kakizaki (GK) rats is frequently observed in this diabetic model, but knowledge on delta cells is scarce. Aiming to compare delta cell physiology/pathology of GK to Wistar rats, we found that delta cell number increased over time as did somatostatin mRNA and delta cells distribution in PI is different in GK rats. Subtle changes in 6-week-old GK rats were found. With maturation and aging of GK rats, disturbed cytoarchitecture occurred with irregular beta cells accompanied by delta cell hyperplasia and loss of pancreatic polypeptide (PPY) positivity. Unlike the constant glucose-stimulation index for insulin PI release in Wistar rats, this index declined with GK age, whereas for somatostatin it increased with age. A decrease of GK rat PPY serum levels was found. GK rat body weight decreased with increasing hyperglycemia. Somatostatin analog octreotide completely blocked insulin secretion, impaired proliferation at low autocrine insulin, and decreased PPY secretion and mitochondrial DNA in INS-1E cells. In conclusion, in GK rats PI, significant local delta cell hyperplasia and suspected paracrine effect of somatostatin diminish beta cell viability and contribute to the deterioration of beta cell mass. Altered PPY-secreting cells distribution amends another component of GK PI’s pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document