beta cell mass
Recently Published Documents


TOTAL DOCUMENTS

363
(FIVE YEARS 104)

H-INDEX

47
(FIVE YEARS 5)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Elisa Fernández-Millán ◽  
Carlos Guillén

Type 2 diabetes (T2D) results from impaired beta-cell function and insufficient beta-cell mass compensation in the setting of insulin resistance. Current therapeutic strategies focus their efforts on promoting the maintenance of functional beta-cell mass to ensure appropriate glycemic control. Thus, understanding how beta-cells communicate with metabolic and non-metabolic tissues provides a novel area for investigation and implicates the importance of inter-organ communication in the pathology of metabolic diseases such as T2D. In this review, we provide an overview of secreted factors from diverse organs and tissues that have been shown to impact beta-cell biology. Specifically, we discuss experimental and clinical evidence in support for a role of gut to beta-cell crosstalk, paying particular attention to bacteria-derived factors including short-chain fatty acids, lipopolysaccharide, and factors contained within extracellular vesicles that influence the function and/or the survival of beta cells under normal or diabetogenic conditions.


2022 ◽  
pp. 101592
Author(s):  
Manuel Blandino-Rosano ◽  
Pau Romaguera Llacer ◽  
Ashley Lin ◽  
Janardan K. Reddy ◽  
Ernesto Bernal-Mizrachi

2021 ◽  
pp. 1-8
Author(s):  
Mahmoud Younis ◽  

Introduction: Diabetes mellitus is not just a disease as it is already known, the matter is more complicated, and it is considered as an assembly of metabolic defects with end result of hyperglycemia.verapamil can decrease the expression of thioredoxin-interacting protein (TXNIP), which is recognized as an important factor in pancreatic beta cells.verapamil could enhance beta cell mass and function. Materials and Methods: 160 type 2 diabetes patients in 2 parallel groups. Results: show statistically significant difference in favour of verapamil in increasing c-peptide levels and decreasing hba1c levels. Conclusion: Verapamil could be used as a type 2 diabetes saviour by increasing beta cell mass and function.


2021 ◽  
Author(s):  
Thomas W Rosahl ◽  
Lynn A Hyde ◽  
Patrick T Reilly ◽  
Marie-France Champy ◽  
Kristin J Belongie ◽  
...  

Beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is required for the production of toxic amyloid peptides and is highly expressed in the brain, but also to a lesser extent in major peripheral organs such as muscle and liver. In contrast, BACE2 is mainly expressed in peripheral tissues and is enriched in pancreatic beta cells, where it regulates beta-cell function and mass. Previous reports demonstrated that loss of BACE1 function decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice, whereas mice lacking Bace2 exhibit reduced blood glucose levels, improved intraperitoneal glucose tolerance and increased beta-cell mass. Impaired glucose homeostasis and insulin resistance are hallmarks of type 2 diabetes and have been implicated in Alzheimers disease. Therefore, we tested the contribution of the individual BACE isoforms to those metabolic phenotypes by placing Bace1 knockout (KO), Bace2 KO, Bace1/2 double knockout (dKO) and wild-type (WT) mice on a high-fat high-cholesterol diet (HFD) for 16 weeks. Bace1 KO and Bace1/2 dKO mice showed decreased body weight and improved glucose tolerance and insulin resistance vs. WT mice. Conversely, Bace2 KO mice did not show any significant differences in body weight, glucose tolerance or insulin resistance under our experimental conditions. Finally, subchronic MBi-3 mediated BACE1/2 inhibition in mice in conjunction with a HFD resulted in a modest improvement of glucose tolerance. Our data indicate that lack of BACE1, but not BACE2, function contributes mainly to the metabolic phenotypic changes observed in Bace1/2 dKO mice, suggesting that inhibition of BACE1 has the greater role (vs. BACE2) in any potential improvements in metabolic homeostasis.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1824
Author(s):  
Pierre Cheung ◽  
Olof Eriksson

Diabetes is a chronic metabolic disease affecting over 400 million people worldwide and one of the leading causes of death, especially in developing nations. The disease is characterized by chronic hyperglycemia, caused by defects in the insulin secretion or action pathway. Current diagnostic methods measure metabolic byproducts of the disease such as glucose level, glycated hemoglobin (HbA1c), insulin or C-peptide levels, which are indicators of the beta-cell function. However, they inaccurately reflect the disease progression and provide poor longitudinal information. Beta-cell mass has been suggested as an alternative approach to study disease progression in correlation to beta-cell function, as it behaves differently in the diabetes physiopathology. Study of the beta-cell mass, however, requires highly invasive and potentially harmful procedures such as pancreatic biopsies, making diagnosis and monitoring of the disease tedious. Nuclear medical imaging techniques using radiation emitting tracers have been suggested as strong non-invasive tools for beta-cell mass. A highly sensitive and high-resolution technique, such as positron emission tomography, provides an ideal solution for the visualization of beta-cell mass, which is particularly essential for better characterization of a disease such as diabetes, and for estimating treatment effects towards regeneration of the beta-cell mass. Development of novel, validated biomarkers that are aimed at beta-cell mass imaging are thus highly necessary and would contribute to invaluable breakthroughs in the field of diabetes research and therapies. This review aims to describe the various biomarkers and radioactive probes currently available for positron emission tomography imaging of beta-cell mass, as well as highlight the need for precise quantification and visualization of the beta-cell mass for designing new therapy strategies and monitoring changes in the beta-cell mass during the progression of diabetes.


2021 ◽  
Vol 61 ◽  
pp. 77-82
Author(s):  
Andrea Mario Bolla ◽  
Vera Usuelli ◽  
Moufida Ben Nasr ◽  
Sofia Frigerio ◽  
Cristian Loretelli ◽  
...  
Keyword(s):  

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1790
Author(s):  
Michal Wszola ◽  
Marta Klak ◽  
Anna Kosowska ◽  
Grzegorz Tymicki ◽  
Andrzej Berman ◽  
...  

Type 1 diabetes (T1D) is characterized by the destruction of over 90% of the β-cells. C-peptide is a parameter for evaluating T1D. Streptozotocin (STZ) is a standard method of inducing diabetes in animals. Eight protocols describe the administration of STZ in mice; C-peptide levels are not taken into account. The aim of the study is to determine whether the STZ protocol for the induction of beta-cell mass destruction allows for the development of a stable in vivo mouse model for research into new transplant procedures in the treatment of type 1 diabetes. Materials and methods: Forty BALB/c mice were used. The animals were divided into nine groups according to the STZ dose and a control group. The STZ doses were between 140 and 400 mg/kg of body weight. C-peptide was taken before and 2, 7, 9, 12, 14, and 21 days after STZ. Immunohistochemistry was performed. The area of the islet and insulin-/glucagon-expressing tissues was calculated. Results: Mice who received 140, 160, 2 × 100, 200, and 250 mg of STZ did not show changes in mean fasting C-peptide in comparison to the control group and to day 0. All animals with doses of 300 and 400 mg of STZ died during the experiment. The area of the islets did not show any differences between the control and STZ-treated mice in groups below 300 mg. The reduction of insulin-positive areas in STZ mice did not exceed 50%. Conclusions: Streptozotocin is not an appropriate method of inducing a diabetes model for further research on transplantation treatments of type 1 diabetes, having caused the destruction of more than 90% of the β-cell mass in BALB/c mice.


2021 ◽  
Author(s):  
M. Arthur Charles ◽  
R. David Leslie

As the world endures a viral pandemic superimposed on a diabetes pandemic, the latter incorporates most of the comorbidities associated with the former, thereby exacerbating risk of death in both. An essential approach to both pandemics is prevention and unrealized earlier treatment. Thus, in this Perspective relating to diabetes we emphasize a paradigm of first, reversible beta-cell organ dysfunction (BCOD) and then irreversible beta-cell organ failure (BCOF), which directly indicate the potential for earlier prevention, also unrealized in current guidelines. Four pillars support this paradigm: epidemiology, pathophysiology, molecular pathology, and genetics. A substantial worldwide knowledge base defines each pillar and informs a more aggressive preventive approach to most forms of the disorder. This analysis seeks to clarify the temporal and therapeutic relationships between lost beta-cell function and content, illuminating the potential for earlier diagnoses and thus, prevention. We also propose that myriad pathways leading to most forms of diabetes converge at the endoplasmic reticulum, where stress can result in beta-cell death and content loss. Finally, genetic and nongenetic origins common to major types of diabetes can inform earlier diagnosis and potentially, prevention, with the aim of preserving beta-cell mass.


2021 ◽  
pp. 100434
Author(s):  
Suheda Erener ◽  
Cara E. Ellis ◽  
Adam Ramzy ◽  
Maria M. Glavas ◽  
Shannon O’Dwyer ◽  
...  

2021 ◽  
Author(s):  
M. Arthur Charles ◽  
R. David Leslie

As the world endures a viral pandemic superimposed on a diabetes pandemic, the latter incorporates most of the comorbidities associated with the former, thereby exacerbating risk of death in both. An essential approach to both pandemics is prevention and unrealized earlier treatment. Thus, in this Perspective relating to diabetes we emphasize a paradigm of first, reversible beta-cell organ dysfunction (BCOD) and then irreversible beta-cell organ failure (BCOF), which directly indicate the potential for earlier prevention, also unrealized in current guidelines. Four pillars support this paradigm: epidemiology, pathophysiology, molecular pathology, and genetics. A substantial worldwide knowledge base defines each pillar and informs a more aggressive preventive approach to most forms of the disorder. This analysis seeks to clarify the temporal and therapeutic relationships between lost beta-cell function and content, illuminating the potential for earlier diagnoses and thus, prevention. We also propose that myriad pathways leading to most forms of diabetes converge at the endoplasmic reticulum, where stress can result in beta-cell death and content loss. Finally, genetic and nongenetic origins common to major types of diabetes can inform earlier diagnosis and potentially, prevention, with the aim of preserving beta-cell mass.


Sign in / Sign up

Export Citation Format

Share Document