scholarly journals Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies

2018 ◽  
Vol 151 ◽  
pp. 59-66 ◽  
Author(s):  
Emiliane Taillebois ◽  
Alison Cartereau ◽  
Andrew K. Jones ◽  
Steeve H. Thany
2006 ◽  
Vol 99 (2) ◽  
pp. 608-615 ◽  
Author(s):  
Laurence A. Brown ◽  
Makoto Ihara ◽  
Steven D. Buckingham ◽  
Kazuhiko Matsuda ◽  
David B. Sattelle

2007 ◽  
Vol 106 (6) ◽  
pp. 1186-1195 ◽  
Author(s):  
James P. Dilger ◽  
Ana Maria Vidal ◽  
Man Liu ◽  
Claire Mettewie ◽  
Takahiro Suzuki ◽  
...  

Background Binding sites for agonists and competitive antagonists (nondepolarizing neuromuscular blocking agents) are located at the alpha-delta and alpha-epsilon subunit interfaces of adult nicotinic acetylcholine receptors. Most information about the amino acids that participate in antagonist binding comes from binding studies with (+)-tubocurarine and metocurine. These bind selectively to the alpha-epsilon interface but are differentially sensitive to mutations. To test the generality of this observation, the authors measured current inhibition by five competitive antagonists on wild-type and mutant acetylcholine receptors. Methods HEK293 cells were transfected with wild-type or mutant (alphaY198F, epsilonD59A, epsilonD59N, epsilonD173A, epsilonD173N, deltaD180K) mouse muscle acetylcholine receptor complementary DNA. Outside-out patches were excised and perfused with acetylcholine in the absence and presence of antagonist. Concentration-response curves were constructed to determine antagonist IC50. An antagonist-removal protocol was used to determine dissociation and association rates. Results Effects of mutations were antagonist specific. alphaY198F decreased the IC50 of (+)-tubocurarine 10-fold, increased the IC50 of vecuronium 5-fold, and had smaller effects on other antagonists. (+)-Tubocurarine was the most sensitive antagonist to epsilonD173 mutations. epsilonD59 mutations had large effects on metocurine and cisatracurium. deltaD180K decreased inhibition by pancuronium, vecuronium, and cisatracurium. Inhibition by these antagonists was increased for receptors containing two delta subunits but no epsilon subunit. Differences in IC50 arose from differences in both dissociation and association rates. Conclusion Competitive antagonists exhibited different patterns of sensitivity to mutations. Except for pancuronium, the antagonists were sensitive to mutations at the alpha-epsilon interface. Pancuronium, vecuronium, and cisatracurium were selective for the alpha-delta interface. This suggests the possibility of synergistic inhibition by pairs of antagonists.


Author(s):  
Jean-Noël Houchat ◽  
Alison Cartereau ◽  
Anaïs Le Mauff ◽  
Emiliane Taillebois ◽  
Steeve H. Thany

Neonicotinoid insecticides are used worldwide and have been demonstrated as toxic to beneficial insects such as honeybees. Their effectiveness is predominantly attributed to their high affinity for insect neuronal nicotinic acetylcholine receptors (nAChRs). Mammalian neuronal nAChRs are of major importance because cholinergic synaptic transmission plays a key role in rapid neurotransmission, learning and memory processes, and neurodegenerative diseases. Because of the low agonist effects of neonicotinoid insecticides on mammalian neuronal nAChRs, it has been suggested that they are relatively safe for mammals, including humans. However, several lines of evidence have demonstrated that neonicotinoid insecticides can modulate cholinergic functions through neuronal nAChRs. Major studies on the influence of neonicotinoid insecticides on cholinergic functions have been conducted using nicotine low-affinity homomeric α7 and high-affinity heteromeric α4β2 receptors, as they are the most abundant in the nervous system. It has been found that the neonicotinoids thiamethoxam and clothianidin can activate the release of dopamine in rat striatum. In some contexts, such as neurodegenerative diseases, they can disturb the neuronal distribution or induce oxidative stress, leading to neurotoxicity. This review highlights recent studies on the mode of action of neonicotinoid insecticides on mammalian neuronal nAChRs and cholinergic functions.


2006 ◽  
Vol 41 (5) ◽  
pp. 640-650 ◽  
Author(s):  
Linjing Mu ◽  
Konstantin Drandarov ◽  
William H. Bisson ◽  
Anita Schibig ◽  
Christa Wirz ◽  
...  

Author(s):  
Sasa M. Trailovic ◽  
Milan Rajkovic ◽  
Djordje S. Marjanovic ◽  
Cédric Neveu ◽  
Claude L. Charvet

Parascaris sp. is the only ascarid parasitic nematode in equids and one of the most threatening infectious organisms in horses. Only a limited number of compounds are available for treatment of horse helminthiasis and Parascaris sp. worms have developed resistance to the three major anthelmintic families. In order to overcome the appearance of resistance, there is an urgent need for new therapeutic strategies. The active ingredients of herbal essential oils are potentially effective antiparasitic drugs. Carvacrol is one of the principal chemicals of essential oil from Origanum, Thymus, Coridothymus, Thymbra, Satureja and Lippia herbs. However, the antiparasitic mode of action of carvacrol is poorly understood so far. Here, the objective of the work was to characterize the activity of carvacrol on Parascaris sp. nicotinic acetylcholine receptors (nAChRs) function both in vivo with the use of worm neuro-muscular flap preparations and in vitro with two-electrode voltage-clamp electrophysiology on nAChRs expressed in Xenopus oocytes. We have developed a neuromuscular contraction assay on Parascaris body flaps and obtained acetylcholine concentration-dependent contraction responses. Strikingly, we observed that 300 µM carvacrol fully and irreversibly abolished Parascaris sp. muscle contractions elicited by acetylcholine. Conversely, carvacrol antagonized acetylcholine-induced currents from both the nicotine-sensitive AChR and the morantel-sensitive AChR subtypes. Thus, we show for the first time that the body muscle flap preparation is a tractable approach to investigate the pharmacology of Parascaris sp. neuro-muscular system. Our results suggest an intriguing mode of action for carvacrol being a potent antagonist of muscle nAChRs of Parascaris sp. worms which may account for its antiparasitic potency.


Sign in / Sign up

Export Citation Format

Share Document