A new transient model for motion and variation of gas phase in pipelines applying collocated multi-grid method with the Eulerian-Lagrangian approach

Author(s):  
Sihang Chen ◽  
Shangfei Song ◽  
Wang Li ◽  
Qi Yang ◽  
Xueyu Qi ◽  
...  
2000 ◽  
Author(s):  
Eivind Helland ◽  
Rene Occelli ◽  
Lounes Tadrist

Abstract Simulations of 2D gas-particle flows in a vertical riser using a mixed Eulerian-Lagrangian approach are addressed. The model for the interstitial gas phase is based on the Navier-Stokes equations for two-phase flow with a coupling term between the gas and solid phases due to drag forces. The motion of particles is treated by a Lagrangian approach and the particles are assumed to interact through binary, instantaneous, non-frontal, inelastic collisions with friction. In this paper different particle clustering effects in the gas-particle flow is investigated.


Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

The action of water and the electron beam on organic specimens in the electron microscope results in the removal of oxidizable material (primarily hydrogen and carbon) by reactions similar to the water gas reaction .which has the form:The energy required to force the reaction to the right is supplied by the interaction of the electron beam with the specimen.The mass of water striking the specimen is given by:where u = gH2O/cm2 sec, PH2O = partial pressure of water in Torr, & T = absolute temperature of the gas phase. If it is assumed that mass is removed from the specimen by a reaction approximated by (1) and that the specimen is uniformly thinned by the reaction, then the thinning rate in A/ min iswhere x = thickness of the specimen in A, t = time in minutes, & E = efficiency (the fraction of the water striking the specimen which reacts with it).


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


1980 ◽  
Vol 77 ◽  
pp. 705-718 ◽  
Author(s):  
Sydney Leach ◽  
Gérald Dujardin ◽  
Guy Taieb
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document