scholarly journals An optimization method for shale gas gathering system - Consideration of reliability enhancement under earthquake-related uncertainties

Author(s):  
Yan Wu ◽  
Zi-Yuan Cui ◽  
Hai Lin ◽  
Yu-Fei Wang ◽  
Xiao Feng
SPE Journal ◽  
2017 ◽  
Vol 22 (06) ◽  
pp. 1877-1892 ◽  
Author(s):  
S.. Liu ◽  
P. P. Valkó

Summary In this paper, we consider the development plan of shale gas or tight oil with multiple multistage fractured laterals in a large square drainage area that we call a “section” (usually 640 acres in the US). We propose a convenient section-based optimization of the fracture array with two integer variables, the number of columns (horizontal laterals) and rows (fractures created in a lateral), to provide some general statements regarding spacing of wells and fractures. The approach is dependent on a reliable and efficient productivity-index (PI) calculation for the boundary-dominated state (BDS). The dimensionless PI is obtained by solving a time-independent eigenvalue problem by use of the finite-element method (FEM) combined with the Richardson extrapolation. The results of the case study demonstrate two decisive factors: the dimensionless total fracture length, related to the total amount of proppant and fracturing fluid available for the section, and the feasible range of actual fracture half-lengths, related to current fracturing-technology limitations. Under the constraint of dimensionless total fracture length, increasing the number of columns (horizontal laterals) increases the total PI but with only diminishing returns, whereas the optimal fracture-penetration ratio decreases somewhat, but is still near unity. When adding the technological constraint of a limited range of fracture half-lengths that can be routinely and reliably created, only a few choices remain admissible, and the optimal decision can be easily made. These general statements for the ideal homogeneous and isotropic formation can serve as a reference in the more-detailed optimization works. In other words, we offer a first-pass method for decision making in early stages when detailed inputs are not yet available. The information derived from the section-based optimization method and the efficient and reliable algorithm for PI calculation should help the design of multistage fracturing in shale-gas or ultralow-permeability oil formations.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Haibo Wang ◽  
Tong Zhou ◽  
Fengxia Li

Abstract Shale gas reservoirs have gradually become the main source for oil and gas production. The automatic optimization technology of complex fracture network in fractured horizontal wells is the key technology to realize the efficient development of shale gas reservoirs. In this paper, based on the flow model of shale gas reservoirs, the porosity/permeability of the matrix system and natural fracture system is characterized. The fracture network morphology is finely characterized by the fracture network expansion calculation method, and the flow model was proposed and solved. On this basis, the influence of matrix permeability, matrix porosity, fracture permeability, fracture porosity, and fracture length on the production of shale gas reservoirs is studied. The optimal design of fracture length and fracture location was carried, and the automatic optimization method of complex fracture network parameters based on simultaneous perturbation stochastic approximation (SPSA) was proposed. The method was applied in a shale gas reservoir, and the results showed that the proposed automatic optimization method of the complex fracture network in shale gas reservoirs can automatically optimize the parameters such as fracture location and fracture length and obtain the optimal fracture network distribution matching with geological conditions.


2021 ◽  
Author(s):  
Meng Wang ◽  
Mingguang Che ◽  
Bo Zeng ◽  
Yi Song ◽  
Yun Jiang ◽  
...  

Abstract Application of diversion agents in temporarily plugging fracturing of horizontal wells of shale has becoming more and more popular. Nevertheless, the studies on determining the diverter dosage are below adequacy. A novel approach based on laboratory experiments, logging data, rock mechanics tests and fracture simulation was proposed to optimizing the dosage of diversion agents. The optimization model is based on the classic Darcy Law. A pair of 3D-printed rock plates with rugged faces was combined to simulate the coarse hydraulic fractures with the width of 2.0 ~ 7.0 mm. The mixture of the diversion agents and slickwater was dynamically injected to simulate the fracture in Temco fracture conductivity system to mimic the practical treatment to temporarily plugging the fracture. The permeability of the temporary plugging zone in the 3D-printed fractures was measured in order to optimize the dosage of the selected diversion agents. The value of Pnet (also the value of ΔP in Darcy Formula) required for creation of new branched fractures was determined using the Warpinski-Teufel Failure Rules. The hydraulic fractures of target stages were simulated to obtain the widths and heights. The experimental results proved that the selected suite of the diversion agents can temporarily plug the 3D-printed fractures of 2.0 ~ 7.0 mm with blocking pressure up to 15 MPa. The measured permeability of the resulting plugging zones was 0.724 ~ 0.933 D (averaging 0.837 D). The value of Pnet required for creation of branched fractures in shale of WY area (main shale gas payzone of China) was determined as 0.4 ~ 15.6 MPa (averaging 7.9 MPa) which means the natural fractures and/or weak planes with approaching angle less than 70° could be opened to increase the SRV. The typical dosage of the diversion agents used for one stage of the horizontal wells (averaging TVD 3600 m) was calculated as 232 ~ 310 kg. The optimization method was applied to the design job of temporarily plugging fracturing of two shale gas wells. The observed surface pressure rise after injection of diversion agents was 0.6 ~ 11.7 MPa (averaging 4.7 MPa) and the monitored microseismic events of the test stages were 37% more than those of the offset stages.


2021 ◽  
Author(s):  
Meng Wang ◽  
Mingguang Che ◽  
Guangyao Wang ◽  
Yonghui Wang ◽  
Guangyou Zhu

Abstract Application of diversion agents in temporarily plugging fracturing of horizontal wells of shale has becoming more and more popular. Nevertheless, the studies on determining the diverter dosage are below adequacy. A novel approach based on laboratory experiments, logging data, rock mechanics tests and fracture simulation was proposed to optimizing the dosage of diversion agents. The optimization model is based on the classic Darcy Law. A pair of 3D-printed rock plates with rugged faces was combined to simulate the coarse hydraulic fractures with the width of 2.0 ~ 7.0 mm. The mixture of the diversion agents and slickwater was dynamically injected to the simulated fracture in Temco fracture conductivity system to mimic the practical treatment of temporarily plugging fracturing. The permeability of the temporary plugging zone in the 3D-printed fractures was measured in order to optimize the dosage of the selected diversion agents. The value of Pnet (also the value of ΔP in Darcy Formula) required for creation of new branched fractures was determined using the Warpinski-Teufel Failure Rules. The hydraulic fractures of target stages were simulated to obtain the widths and heights. The experimental results proved that the selected suite of the diversion agents can temporarily plug the 3D-printed fractures of 2.0 ~ 7.0 mm with blocking pressure up to 15 MPa. The measured permeability of the resulting plugging zones was 0.724 ~ 0.933 D (averaging 0.837 D). The value of Pnet required for creation of branched fractures in shale of WY area (main shale gas payzone of China) was determined as 0.4 ~ 15.6 MPa (averaging 7.9 MPa) which means the natural fractures and/or weak planes with approaching angle less than 70o could be opened to increase the SRV. The typical dosage of the diversion agents used for one stage of the horizontal wells was calculated as 232 ~ 310 kg. The optimization method was applied to the design job of temporarily plugging fracturing of two shale gas wells. The observed surface pressure rise after injection of diversion agents was 0.6 ~ 11.7 MPa (averaging 4.7 MPa) and the monitored microseismic events of the test stages were 37% more than those of the offset stages.


CICTP 2019 ◽  
2019 ◽  
Author(s):  
Yuchen Wang ◽  
Tao Lu ◽  
Hongxing Zhao ◽  
Zhiying Bao
Keyword(s):  

2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


Sign in / Sign up

Export Citation Format

Share Document