Asaronic acid inhibits ER stress sensors and boosts functionality of ubiquitin-proteasomal degradation in 7β-hydroxycholesterol-loaded macrophages

Phytomedicine ◽  
2021 ◽  
Vol 92 ◽  
pp. 153763
Author(s):  
Hyeongjoo Oh ◽  
Min-Kyung Kang ◽  
Sin-Hye Park ◽  
Dong Yeon Kim ◽  
Soo-Il Kim ◽  
...  
Science ◽  
2019 ◽  
Vol 365 (6450) ◽  
pp. eaau6499 ◽  
Author(s):  
Sahil Chopra ◽  
Paolo Giovanelli ◽  
Perla Abigail Alvarado-Vazquez ◽  
Sara Alonso ◽  
Minkyung Song ◽  
...  

Inositol-requiring enzyme 1[α] (IRE1[α])–X-box binding protein spliced (XBP1) signaling maintains endoplasmic reticulum (ER) homeostasis while controlling immunometabolic processes. Yet, the physiological consequences of IRE1α–XBP1 activation in leukocytes remain unexplored. We found that induction of prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox-2) and prostaglandin E synthase (Ptges/mPGES-1) was compromised in IRE1α-deficient myeloid cells undergoing ER stress or stimulated through pattern recognition receptors. Inducible biosynthesis of prostaglandins, including the pro-algesic mediator prostaglandin E2 (PGE2), was decreased in myeloid cells that lack IRE1α or XBP1 but not other ER stress sensors. Functional XBP1 transactivated the human PTGS2 and PTGES genes to enable optimal PGE2 production. Mice that lack IRE1α–XBP1 in leukocytes, or that were treated with IRE1α inhibitors, demonstrated reduced pain behaviors in PGE2-dependent models of pain. Thus, IRE1α–XBP1 is a mediator of prostaglandin biosynthesis and a potential target to control pain.


2005 ◽  
Vol preprint (2007) ◽  
pp. 1
Author(s):  
Marina Shenkman ◽  
Sandra Tolchinsky ◽  
Gerardo Lederkremer

2013 ◽  
Vol 70 (24) ◽  
pp. 4681-4694 ◽  
Author(s):  
Hadi Digaleh ◽  
Mahmoud Kiaei ◽  
Fariba Khodagholi

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Vaishali Kumar ◽  
Shuvadeep Maity

Recent studies undoubtedly show the importance of inter organellar connections to maintain cellular homeostasis. In normal physiological conditions or in the presence of cellular and environmental stress, each organelle responds alone or in coordination to maintain cellular function. The Endoplasmic reticulum (ER) and mitochondria are two important organelles with very specialized structural and functional properties. These two organelles are physically connected through very specialized proteins in the region called the mitochondria-associated ER membrane (MAM). The molecular foundation of this relationship is complex and involves not only ion homeostasis through the shuttling of calcium but also many structural and apoptotic proteins. IRE1alpha and PERK are known for their canonical function as an ER stress sensor controlling unfolded protein response during ER stress. The presence of these transmembrane proteins at the MAM indicates its potential involvement in other biological functions beyond ER stress signaling. Many recent studies have now focused on the non-canonical function of these sensors. In this review, we will focus on ER mitochondrial interdependence with special emphasis on the non-canonical role of ER stress sensors beyond ER stress.


2017 ◽  
Vol 98 (5) ◽  
pp. 1027-1039 ◽  
Author(s):  
Manish Sharma ◽  
Sankar Bhattacharyya ◽  
Kiran Bala Sharma ◽  
Shailendra Chauhan ◽  
Suramya Asthana ◽  
...  

2019 ◽  
Vol 316 (2) ◽  
pp. F301-F315
Author(s):  
Tatsuya Tominaga ◽  
Isha Sharma ◽  
Yui Fujita ◽  
Toshio Doi ◽  
Aryana K. Wallner ◽  
...  

Besides oxidant stress, endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of various metabolic disorders affecting the kidney. These two forms of stresses are not mutually exclusive to each other and may operate by a feedback loop in worsening the cellular injury. To attest to this contention, studies were performed to assess whether in such a setting, there is worsening of tubulointerstitial injury. We employed tunicamycin as a model of ER stress and used tubular cells and mice overexpressing myo-inositol oxygenase (MIOX), an enzyme involved in glycolytic events with excessive generation of ROS. Concomitant treatment of tunicamycin and transfection of cells with MIOX-pcDNA led to a marked generation of ROS, which was reduced by MIOX-siRNA. Likewise, an accentuated expression of ER stress sensors, GRP78, XBP1, and CHOP, was observed, which was reduced with MIOX-siRNA. These sensors were markedly elevated in MIOX-TG mice compared with WT treated with tunicamycin. This was accompanied with marked deterioration of tubular morphology, along with impairment of renal functions. Interestingly, minimal damage and elevation of ER stressors was observed in MIOX-KO mice. Downstream events that were more adversely affected in MIOX-TG mice included accentuated expression of proapoptogenic proteins, proinflammatory cytokines, and extracellular matrix constituents, although expression of these molecules was unaffected in MIOX-KO mice. Also, their tunicamycin-induced accentuated expression in tubular cells was notably reduced with MIOX-siRNA. These studies suggest that the biology of MIOX-induced oxidant stress and tunicamycin-induced ER stress are interlinked, and both of the events may feed into each other to amplify the tubulointerstitial injury.


2013 ◽  
Vol 304 (12) ◽  
pp. C1117-C1126 ◽  
Author(s):  
Marion Maurel ◽  
Eric Chevet

The endoplasmic reticulum (ER)-induced unfolded protein response (ERUPR) is an adaptive mechanism that is activated upon accumulation of misfolded proteins in the ER and aims at restoring ER homeostasis. The ERUPR is transduced by three major ER-resident stress sensors, namely PKR-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring enzyme 1 (IRE1). Activation of these ER stress sensors leads to transcriptional reprogramming of the cells. Recently, microRNAs (miRNAs), small noncoding RNAs that generally repress gene expression, have emerged as key regulators of ER homeostasis and important players in ERUPR-dependent signaling. Moreover, the miRNAs biogenesis machinery appears to also be regulated upon ER stress. Herein we extensively review the relationships existing between “canonical” ERUPR signaling, control of ER homeostasis, and miRNAs. We reveal an intricate signaling network that might confer specificity and selectivity to the ERUPR in tissue- or stress-dependent fashion. We discuss these issues in the context of the physiological and pathophysiological roles of ERUPR signaling.


Oncotarget ◽  
2016 ◽  
Vol 7 (32) ◽  
pp. 51854-51864 ◽  
Author(s):  
Asaha Fujimoto ◽  
Kei Kawana ◽  
Ayumi Taguchi ◽  
Katsuyuki Adachi ◽  
Masakazu Sato ◽  
...  

2018 ◽  
Vol 115 (11) ◽  
pp. 2758-2763 ◽  
Author(s):  
Katsuki Mukaigasa ◽  
Tadayuki Tsujita ◽  
Vu Thanh Nguyen ◽  
Li Li ◽  
Hirokazu Yagi ◽  
...  

Nrf2 plays critical roles in animals’ defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shaojie Yin ◽  
Liuhui Li ◽  
Ya Tao ◽  
Jie Yu ◽  
Simin Wei ◽  
...  

Endoplasmic reticulum (ER) stress may contribute to the pathogenesis and perpetuation of ulcerative colitis (UC). Previous studies have shown artesuante (ARS) has the protective effect on experimental UC. Therefore, it can be assumed that ARS can regulate ER stress and its related reactions. Dextran sulfate sodium (DSS) induced UC model in mice was used to testify this hypothesis. The results clearly showed that DSS exposure caused excessive ER stress evidenced by a markedly increase of GRP78 and CHOP expression, and then activated the ER stress sensors PERK, IRE1, ATF6 and their respective signaling pathways, followed by upregulated caspases12 and lowered Bcl-2/Bax ratio. However, ARS treatment significantly inhibited the occurrence of ER stress via preventing the activation of PERK-eIF2α-ATF4-CHOP and IRE1α-XBP1 signaling pathways, concurrently ER-stress-associated apoptosis in colon tissues. Moreover, ARS treatment remarkably inhibited the activation of NF-κB and the expression levels of pro-inflammatory cytokines, improved the clinical and histopathological alterations as well as maintained the expression of claudin-1 and Muc2 in mucosal layer of colon. Notably, the classic ER stress inhibitor 4-phenyhlbutyric acid enhanced the beneficial effects of ARS; in contrast, the ER stress inducer 2-deoxy-d-glucose substantially abrogated the above-mentioned effects, uncovering the involvement of ER stress in the response. These findings indicated the protection of ARS on UC is associated with its suppressing excessive ER stress mediated intestinal barrier damage and inflammatory response. This study provides a novel aspect to understand the mechanism of ARS against UC.


Sign in / Sign up

Export Citation Format

Share Document