scholarly journals Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish

2018 ◽  
Vol 115 (11) ◽  
pp. 2758-2763 ◽  
Author(s):  
Katsuki Mukaigasa ◽  
Tadayuki Tsujita ◽  
Vu Thanh Nguyen ◽  
Li Li ◽  
Hirokazu Yagi ◽  
...  

Nrf2 plays critical roles in animals’ defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Karan Naresh Amin ◽  
Palanisamy Rajagru ◽  
Koustav Sarkar ◽  
M. R. Ganesh ◽  
Takayoshi Suzuki ◽  
...  

Endoplasmic reticulum (ER) plays a key role in the folding, modification, and trafficking of proteins. When the homeostasis of the ER is disturbed, un/misfolded proteins accumulate in the ER which leads to ER stress. Sustained ER stress results in apoptosis, which is associated with various diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor in redox homeostasis by regulating various genes associated with detoxification and cell-protective mechanisms. We found that Rosolic acid (RA) treatment dose-dependently activates Nrf2 in endothelial cells using the enzyme fragment complementation assay. The cytoprotective role of RA against ER stress-induced endothelial apoptosis and its molecular mechanism was explored in the present study. The Nrf2 and its target genes, as well as ER stress marker expressions, were measured by qPCR in ER stress-exposed endothelial cells. The contribution of Nrf2 in RA-mediated defense mechanism in endothelial cells was established by knockout studies using Nrf2-CRISPR/Cas9. The treatment with RA to ER stress-induced endothelial cells exhibited activation of Nrf2, as demonstrated by Nrf2 translocation and reduction of ER stress markers. We found that the Nrf2 knockout sensitized the endothelial cells against ER stress, and further, RA failed to mediate its cytoprotective effect. Proteomic studies using LC-MS/MS revealed that among the 1370 proteins detected, we found 296 differentially regulated proteins in ER stress-induced endothelial cells, and RA administration ameliorated 71 proteins towards the control levels. Of note, the ER stress in endothelial cells was attenuated by the treatment with the RA, suggesting the role of the Nrf2 activator in the pathological conditions of ER stress-associated diseases.


2005 ◽  
Vol 25 (17) ◽  
pp. 7522-7533 ◽  
Author(s):  
Zhi-Ming Huang ◽  
Thomas Tan ◽  
Hiderou Yoshida ◽  
Kazutoshi Mori ◽  
Yanjun Ma ◽  
...  

ABSTRACT IRE1-alpha is an integral membrane protein of the endoplasmic reticulum (ER) that is a key sensor in the cellular transcriptional response to stress in the ER. Upon induction of ER stress, IRE1-alpha is activated, resulting in the synthesis of the active form of the transcription factor XBP1 via IRE1-mediated splicing of its mRNA. In this report, we have examined the role of IRE1-alpha and XBP1 in activation of the hepatitis B virus S promoter by ER stress. Cotransfection experiments revealed that overexpression of either IRE1-alpha or XBP1 activated this promoter. Conversely, cotransfected dominant-negative IRE1-alpha or small interfering RNA directed against XBP1 decreased the activation of the S promoter by ER stress, confirming an important role for the IRE1-alpha/XBP1 signaling pathway in activation of the S promoter. However, XBP1 does not bind directly to the S promoter; rather, a novel S promoter-binding complex that does not contain XBP1 is induced in cells undergoing ER stress in an XBP1-dependent manner. This complex, as well as transcriptional activation of the S promoter, is induced by ER stress in hepatocytes but not in fibroblasts, despite the presence of active XBP1 in the latter. Thus, the hepatitis B virus S promoter responds to a novel, cell type-restricted transcriptional pathway downstream of IRE1-alpha and XBP1.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1160 ◽  
Author(s):  
Thoufiqul Alam Riaz ◽  
Raghu Patil Junjappa ◽  
Mallikarjun Handigund ◽  
Jannatul Ferdous ◽  
Hyung-Ryong Kim ◽  
...  

Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases. Thus, further understanding of its molecular structure and mechanism of action during different cell insults helps in designing and developing better therapeutic strategies for the above-mentioned chronic diseases. In this review, recent insights into structure and mechanism of activation of IRE1α along with its complex regulating network were discussed in relation to their basic cellular physiological function. Addressing different binding partners that can modulate IRE1α function, UPRosome triggers different downstream pathways depending on the cellular backdrop. Furthermore, IRE1α are in normal cell activities outside the dominion of ER stress and activities under the weather of inflammation, diabetes, and obesity-related metaflammation. Thus, IRE1 as an ER stress sensor needs to be understood from a wider perspective for comprehensive functional meaning, which facilitates us with assembling future needs and therapeutic benefits.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Yu-ping Zhu ◽  
Ze Zheng ◽  
Shaofan Hu ◽  
Xufang Ru ◽  
Zhuo Fan ◽  
...  

The water-soluble Nrf2 (nuclear factor, erythroid 2-like 2, also called Nfe2l2) is accepted as a master regulator of antioxidant responses to cellular stress, and it was also identified as a direct target of the endoplasmic reticulum (ER)-anchored PERK (protein kinase RNA-like endoplasmic reticulum kinase). However, the membrane-bound Nrf1 (nuclear factor, erythroid 2-like 1, also called Nfe2l1) response to ER stress remains elusive. Herein, we report a unity of opposites between these two antioxidant transcription factors, Nrf1 and Nrf2, in coordinating distinct cellular responses to the ER stressor tunicamycin (TU). The TU-inducible transcription of Nrf1 and Nrf2, as well as GCLM (glutamate cysteine ligase modifier subunit) and HO-1 (heme oxygenase 1), was accompanied by activation of ER stress signaling networks. Notably, the unfolded protein response (UPR) mediated by ATF6 (activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK was significantly suppressed by Nrf1α-specific knockout, but hyper-expression of Nrf2 and its target genes GCLM and HO-1 has retained in Nrf1α−/− cells. By contrast, Nrf2−/−ΔTA cells with genomic deletion of its transactivation (TA) domain resulted in significant decreases of GCLM, HO-1 and Nrf1; this was accompanied by partial decreases of IRE1 and ATF6, rather than PERK, but with an increase of ATF4 (activating transcription factor 4). Interestingly, Nrf1 glycosylation and its trans-activity to mediate the transcriptional expression of the 26S proteasomal subunits, were repressed by TU. This inhibitory effect was enhanced by Nrf1α−/− and Nrf2−/−ΔTA, but not by a constitutive activator caNrf2ΔN (that increased abundances of the non-glycosylated and processed Nrf1). Furthermore, caNrf2ΔN also enhanced induction of PERK and IRE1 by TU, but reduced expression of ATF4 and HO-1. Thus, it is inferred that such distinct roles of Nrf1 and Nrf2 are unified to maintain cell homeostasis by a series of coordinated ER-to-nuclear signaling responses to TU. Nrf1α (i.e., a full-length form) acts in a cell-autonomous manner to determine the transcription of most of UPR-target genes, albeit Nrf2 is also partially involved in this process. Consistently, transactivation of ARE (antioxidant response element)-driven BIP (binding immunoglobulin protein)-, PERK- and XBP1 (X-box binding protein 1)-Luc reporter genes was mediated directly by Nrf1 and/or Nrf2. Interestingly, Nrf1α is more potent than Nrf2 at mediating the cytoprotective responses against the cytotoxicity of TU alone or plus tBHQ (tert-butylhydroquinone). This is also further supported by the evidence that the intracellular reactive oxygen species (ROS) levels are increased in Nrf1α−/− cells, but rather are, to our surprise, decreased in Nrf2−/−ΔTA cells.


Author(s):  
Malgorzata Furmanik ◽  
Rick van Gorp ◽  
Meredith Whitehead ◽  
Sadia Ahmad ◽  
Jayanta Bordoloi ◽  
...  

Objective: Vascular calcification is common among aging populations and mediated by vascular smooth muscle cells (VSMCs). The endoplasmic reticulum (ER) is involved in protein folding and ER stress has been implicated in bone mineralization. The role of ER stress in VSMC-mediated calcification is less clear. Approach and Results: mRNA expression of the ER stress markers PERK (PKR (protein kinase RNA)-like ER kinase), ATF (activating transcription factor) 4, ATF6, and Grp78 was detectable in human vessels with levels of PERK decreased in calcified plaques compared to healthy vessels. Protein deposition of Grp78/Grp94 was increased in the matrix of calcified arteries. Induction of ER stress accelerated human primary VSMC-mediated calcification, elevated expression of some osteogenic markers (Runx2, Osterix, ALP, BSP, and OPG), and decreased expression of SMC markers. ER stress potentiated extracellular vesicle (EV) release via SMPD3. EVs from ER stress-treated VSMCs showed increased Grp78 levels and calcification. Electron microscopy confirmed the presence of Grp78/Grp94 in EVs. siRNA knock-down of Grp78 decreased calcification. Warfarin-induced Grp78 and ATF4 expression in rat aortas and VSMCs and increased calcification in an ER stress-dependent manner via increased EV release. Conclusions: ER stress induces vascular calcification by increasing release of Grp78-loaded EVs. Our results reveal a novel mechanism of action of warfarin, involving increased EV release via the PERK-ATF4 pathway, contributing to calcification. This study is the first to show that warfarin induces ER stress and to link ER stress to cargo loading of EVs.


2019 ◽  
Vol 38 (7) ◽  
pp. 833-845
Author(s):  
X Zhou ◽  
Z Chen ◽  
W Zhong ◽  
R Yu ◽  
L He

In the development of dental fluorosis, oxidative stress is considered as the key mechanism. Endoplasmic reticulum (ER) stress can induce oxidative stress and activate the important antioxidative factor nuclear factor erythroid 2-related factor 2 (Nrf2) in a PKR-like ER kinase (PERK)-dependent manner, but combining ER stress and oxidative stress, the role of PERK-Nrf2 signaling pathway involved in fluoride-regulated ameloblasts is not fully defined. Here, we studied the effect of fluoride on PERK-Nrf2 signaling pathway in mouse ameloblasts. We found that low-dose and continuous fluoride exposure increased binding immunoglobulin protein expression and activated PERK–activating transcription factor 4 signaling pathway. Meanwhile, the expression of Nrf2 and its target genes (glutamylcysteine synthetase and glutathione S-transferase-P1) enhanced following ER stress. Tunicamycin increased the expression of PERK, leading to Nrf2 nuclear import, and tauroursodeoxycholate suppressed Nrf2 activation through PERK during ER stress, indicating that PERK activation is required for Nrf2 nuclear entry. Furthermore, tert-butylhydroquinone triggered the overexpression of Nrf2 to reduce ER stress, but luteolin inhibited Nrf2 nuclear localization to elevate ER stress. In summary, this study proved that fluoride under certain dose can induce ER stress and promote Nrf2 nuclear import via PERK activation and suggested that antioxidation mechanism mediated by PERK-Nrf2 can alleviate fluoride-induced ER stress effectively.


2020 ◽  
Vol 21 (6) ◽  
pp. 2108 ◽  
Author(s):  
Wioletta Rozpędek-Kamińska ◽  
Natalia Siwecka ◽  
Adam Wawrzynkiewicz ◽  
Radosław Wojtczak ◽  
Dariusz Pytel ◽  
...  

Higher prevalence of neurodegenerative diseases is strictly connected with progressive aging of the world population. Interestingly, a broad range of age-related, neurodegenerative diseases is characterized by a common pathological mechanism—accumulation of misfolded and unfolded proteins within the cells. Under certain circumstances, such protein aggregates may evoke endoplasmic reticulum (ER) stress conditions and subsequent activation of the unfolded protein response (UPR) signaling pathways via the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent manner. Under mild to moderate ER stress, UPR has a pro-adaptive role. However, severe or long-termed ER stress conditions directly evoke shift of the UPR toward its pro-apoptotic branch, which is considered to be a possible cause of neurodegeneration. To this day, there is no effective cure for Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), or prion disease. Currently available treatment approaches for these diseases are only symptomatic and cannot affect the disease progression. Treatment strategies, currently under detailed research, include inhibition of the PERK-dependent UPR signaling branches. The newest data have reported that the use of small-molecule inhibitors of the PERK-mediated signaling branches may contribute to the development of a novel, ground-breaking therapeutic approach for neurodegeneration. In this review, we critically describe all the aspects associated with such targeted therapy against neurodegenerative proteopathies.


2020 ◽  
Vol 105 (9) ◽  
pp. 2905-2918
Author(s):  
Laura Jackisch ◽  
Alice M Murphy ◽  
Sudhesh Kumar ◽  
Harpal Randeva ◽  
Gyanendra Tripathi ◽  
...  

Abstract Context Dysfunctional endoplasmic reticulum (ER) and mitochondria are known to contribute to the pathology of metabolic disease. This damage may occur, in part, as a consequence of ER-mitochondria cross-talk in conditions of nutrient excess such as obesity. To date, insight into this dynamic relationship has not been characterized in adipose tissue. Therefore, this study investigated whether ER stress contributes to the development of mitochondrial inefficiency in human adipocytes from lean and obese participants. Methods Human differentiated adipocytes from Chub-S7 cell line and primary abdominal subcutaneous adipocytes from lean and obese participants were treated with tunicamycin to induce ER stress. Key parameters of mitochondrial function were assessed, including mitochondrial respiration, membrane potential (MMP), and dynamics. Results ER stress led to increased respiratory capacity in a model adipocyte system (Chub-S7 adipocytes) in a concentration and time dependent manner (24 h: 23%↑; 48 h: 68%↑, P < 0.001; 72 h: 136%↑, P < 0.001). This corresponded with mitochondrial inefficiency and diminished MMP, highlighting the formation of dysfunctional mitochondria. Morphological analysis revealed reorganization of mitochondrial network, specifically mitochondrial fragmentation. Furthermore, p-DRP1, a key protein in fission, significantly increased (P < 0.001). Additionally, adipocytes from obese subjects displayed lower basal respiration (49%↓, P < 0.01) and were unresponsive to tunicamycin in contrast to their lean counterparts, demonstrating inefficient mitochondrial oxidative capacity. Conclusion These human data suggest that adipocyte mitochondrial inefficiency is driven by ER stress and exacerbated in obesity. Nutrient excess–induced ER stress leads to mitochondrial dysfunction that may therefore shift lipid deposition ectopically and thus have further implications on the development of related metabolic disorders.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3585
Author(s):  
Min Woo Kim ◽  
Ju-Hee Kang ◽  
Hyun Jin Jung ◽  
Se Yong Park ◽  
Thu Han Le Phan ◽  
...  

Acetaminophen (APAP) is one of the most frequently prescribed analgesic and anti-pyretic drugs. However, APAP-induced hepatotoxicity is a major cause of acute liver failure globally. While the therapeutic dose is safe, an overdose of APAP produces an excess of the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), subsequently resulting in hepatotoxicity. Allyl isothiocyanate (AITC), a bioactive molecule in cruciferous plants, is reported to exert various biological effects, including anti-inflammatory, anti-cancer, and anti-microbial effects. Notably, AITC is known for activating nuclear factor erythroid 2-related factor 2 (NRF2), but there is limited evidence supporting the beneficial effects on hepatocytes and liver, where AITC is mainly metabolized. We applied a mouse model in the current study to investigate whether AITC protects the liver against APAP-induced injury, wherein we observed the protective effects of AITC. Furthermore, NRF2 nuclear translocation and the increase of target genes by AITC treatment were confirmed by in vitro experiments. APAP-induced cell damage was attenuated by AITC via an NRF2-dependent manner, and rapid NRF2 activation by AITC was attributed to the elevation of NRF2 stability by decreasing its spontaneous degradation. Moreover, liver tissues from our mouse experiment revealed that AITC increases the expression of heme oxygenase-1 (HO-1), an NRF2 target gene, confirming the potential of AITC as a hepatoprotective agent that induces NRF2 activation. Taken together, our results indicate the potential of AITC as a natural-product-derived NRF2 activator targeting the liver.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052094976
Author(s):  
Min Li ◽  
Ying Zhang ◽  
Jixing Wang

Objective Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, and excessive endoplasmic reticulum (ER) stress is closely correlated with the cell injury caused by sepsis. This study aimed to analyze the possible role of ER stress in SAE cell models. Methods PC12 and MES23.5 cells were treated with increasing concentrations of lipopolysaccharides (LPS). The Cell Counting Kit-8 assay was used to detect cell viability and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to assess cell apoptosis. In addition, the protein expression levels of ER stress markers [GRP78, CHOP, inositol-requiring enzyme 1 (IRE1), and PKR-like ER kinase (PERK)] and apoptosis-related proteins (Bax, Bcl-2, caspase-3, and cleaved caspase-3) were analyzed using western blotting. Results LPS treatment activated ER stress markers in both the PC12 and MES23.5 cells. The overexpression of GRP78 significantly reduced cell viability and enhanced cell apoptosis in a time-dependent manner. An ER stress inhibitor, 4-PBA, significantly enhanced cell viability and inhibited the cell apoptosis induced by LPS. Therefore, an enhanced unfolded protein response (UPR) and UPR suppression may regulate cell apoptosis. Conclusions UPR was shown to be involved in regulating LPS-induced neuron injury. UPR could be a potential therapeutic target in SAE.


Sign in / Sign up

Export Citation Format

Share Document