scholarly journals Stochastic resonance in bistable systems with nonlinear dissipation and multiplicative noise: A microscopic approach

2013 ◽  
Vol 392 (10) ◽  
pp. 2532-2546 ◽  
Author(s):  
Hideo Hasegawa
2021 ◽  
Vol 3 (4) ◽  
Author(s):  
F. Naha Nzoupe ◽  
Alain M. Dikandé

AbstractThe occurrence of stochastic resonance in bistable systems undergoing anomalous diffusions, which arise from density-dependent fluctuations, is investigated with an emphasis on the analytical formulation of the problem as well as a possible analytical derivation of key quantifiers of stochastic resonance. The nonlinear Fokker–Planck equation describing the system dynamics, together with the corresponding Ito–Langevin equation, is formulated. In the linear response regime, analytical expressions of the spectral amplification, of the signal-to-noise ratio and of the hysteresis loop area are derived as quantifiers of stochastic resonance. These quantifiers are found to be strongly dependent on the parameters controlling the type of diffusion; in particular, the peak characterizing the signal-to-noise ratio occurs only in close ranges of parameters. Results introduce the relevant information that, taking into consideration the interactions of anomalous diffusive systems with a periodic signal, can provide a better understanding of the physics of stochastic resonance in bistable systems driven by periodic forces.


2006 ◽  
Vol 353 (5) ◽  
pp. 364-371 ◽  
Author(s):  
Rajarshi Ray ◽  
Supratim Sengupta

1995 ◽  
Vol 197 (5-6) ◽  
pp. 379-386 ◽  
Author(s):  
Alexander Neiman ◽  
Lutz Schimansky-Geier

1989 ◽  
pp. 275-280
Author(s):  
Larry Fabiny ◽  
Gautam Vemuri ◽  
Rajarshi Roy

1999 ◽  
Vol 09 (06) ◽  
pp. 1159-1167 ◽  
Author(s):  
C. HAUPTMANN ◽  
F. KAISER ◽  
C. EICHWALD

A model of coupled nonlinear oscillators is discussed, wherein Langevin-type bistable systems are combined with self-sustained oscillators. An external harmonic signal is coupled in a subthreshold manner into the bistable systems at the initial stage of the signal chain. Signal transfer through the oscillators is studied under the influence of noise. Different noise contributions, including spatially-incoherent and spatially-coherent noise sources are considered. Results reveal a stochastic resonance kind of behavior at different stages of the signal transfer, specifically the harmonic signal is transduced through the whole system of coupled oscillators. The combined action of spatially-incoherent and spatially-coherent noise exhibits constructive as well as destructive influences on signal amplification.


2016 ◽  
Vol 30 (24) ◽  
pp. 1650308 ◽  
Author(s):  
Kang-Kang Wang ◽  
Ya-Jun Wang ◽  
Jian-Cheng Wu

In this paper, we investigate the steady-state properties and the transition rate for an ecological vegetation growth system induced by the terms of the colored multiplicative and additive noises. Numerical results indicate that the multiplicative noise and the additive one can reduce the stability of the ecological system and slow down the development velocity of the vegetation, while two noise self-correlation times can increase the stability of the system and speed up the expansion process of the vegetation system. With respect to the stochastic resonance (SR) phenomenon caused by noise terms and a multiplicative weak periodic signal, the results show that the additive noise always enhances the SR effect, two noise self-correlation time terms can produce SR phenomenon, but play opposite roles in enhancing or inhibiting the SR effect under different parameter conditions. In particular, the two self-correlation times can keep up the maximum of the signal-to-noise ratio (SNR) invariant in specific situations. Analogously, the multiplicative noise can not only improve the SNR, but also restrain the SR phenomenon in different cases.


2020 ◽  
pp. 2150024
Author(s):  
Kang-Kang Wang ◽  
De-Cai Zong ◽  
Ya-Jun Wang ◽  
Sheng-Hong Li

In this paper, the regime shift behaviors between the prosperous state and the extinction state and stochastic resonance (SR) phenomenon for a metapopulation system subjected to time delay and correlated Gaussian colored noises are investigated. Through the numerical calculation of the modified potential function and the stationary probability density function (SPDF), one can make clearly the following results: Both multiplicative noise and noise correlation times can improve effectively the ecological stability and prolong the survival time of the system; while additive noise, time delay and noise correlation strength can weaken significantly the biological stability and speed up the extinction of the population. As for the signal-to-noise ratio (SNR), it is found that time delay, multiplicative noise and noise correlation strength can all impair the SR effect. Conversely, the two noise correlation times and additive noise are in favor of the improvement of the peak values of SNR. It is particularly worth mentioning that in the case of [Formula: see text], time delay [Formula: see text] and self-correlation time [Formula: see text] of the additive noise display exactly the opposite effect on the stimulation of the resonant peak in the SNR–[Formula: see text] plots.


Sign in / Sign up

Export Citation Format

Share Document