Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction

Author(s):  
Linbo Zhai ◽  
Yong Yang ◽  
Shudian Song ◽  
Shuyue Ma ◽  
Xiumin Zhu ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Jiangni Yu

With the development of society and the improvement of people's material level, more and more people like to travel by airplane. If we can predict the passenger flow of an airline in advance, it can be used as an important decision-making basis for its flight route planning, crew scheduling planning and ticket price formulation in the process of management and operation. However, due to the high complexity of aviation network, the existing traffic prediction methods generally have the problem of low prediction accuracy. In order to overcome this problem, this paper makes full use of graph convolutional neural network and long—short memory network to construct a prediction system with short—term prediction ability. Specifically, this paper uses the graph convolutional neural network as a feature extraction tool to extract the key features of air traffic data, and solves the problem of long term and short term dependence between data through the long term memory network, then we build a high-precision air traffic prediction system based on it. Finally, we design a comparison experiment to compare the algorithm with the traditional algorithms. The results show that the algorithm we proposed in this paper has a higher accuracy in air flow prediction according to the lower loss function value.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document