scholarly journals The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks

Author(s):  
Weicai Ma ◽  
Peng Zhang ◽  
Xin Zhao ◽  
Leyang Xue
2019 ◽  
Vol 29 (7) ◽  
pp. 073111 ◽  
Author(s):  
Zhaoqing Li ◽  
Peican Zhu ◽  
Dawei Zhao ◽  
Zhenghong Deng ◽  
Zhen Wang

2019 ◽  
Vol 533 ◽  
pp. 122028
Author(s):  
Dongmei Fan ◽  
Guo-Ping Jiang ◽  
Yu-Rong Song ◽  
Xu Zhang

2019 ◽  
Vol 100 (3) ◽  
Author(s):  
Paulo Cesar Ventura da Silva ◽  
Fátima Velásquez-Rojas ◽  
Colm Connaughton ◽  
Federico Vazquez ◽  
Yamir Moreno ◽  
...  

2019 ◽  
Vol 75 ◽  
pp. 806-818 ◽  
Author(s):  
Hui Yang ◽  
Changgui Gu ◽  
Ming Tang ◽  
Shi-Min Cai ◽  
Ying-Cheng Lai

2018 ◽  
Vol 20 (1) ◽  
pp. 013007 ◽  
Author(s):  
Xiaolong Chen ◽  
Ruijie Wang ◽  
Ming Tang ◽  
Shimin Cai ◽  
H Eugene Stanley ◽  
...  

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 105
Author(s):  
Robert Jankowski ◽  
Anna Chmiel

Modelling the epidemic’s spread on multiplex networks, considering complex human behaviours, has recently gained the attention of many scientists. In this work, we study the interplay between epidemic spreading and opinion dynamics on multiplex networks. An agent in the epidemic layer could remain in one of five distinct states, resulting in the SIRQD model. The agent’s attitude towards respecting the restrictions of the pandemic plays a crucial role in its prevalence. In our model, the agent’s point of view could be altered by either conformism mechanism, social pressure, or independent actions. As the underlying opinion model, we leverage the q-voter model. The entire system constitutes a coupled opinion–dynamic model where two distinct processes occur. The question arises of how to properly align these dynamics, i.e., whether they should possess equal or disparate timescales. This paper highlights the impact of different timescales of opinion dynamics on epidemic spreading, focusing on the time and the infection’s peak.


Sign in / Sign up

Export Citation Format

Share Document