Solitons interaction in a spherically symmetric Bose–Einstein condensate

2009 ◽  
Vol 404 (8-11) ◽  
pp. 1235-1240 ◽  
Author(s):  
Sheng-chang Li ◽  
Jiu-ning Han ◽  
Wen-shan Duan
2006 ◽  
Vol 15 (12) ◽  
pp. 2257-2265
Author(s):  
M. P. SILVERMAN

Fermionic Cooper pairing leading to the BCS-type hadronic superfluidity is believed to account for periodic variations ("glitches") and subsequent slow relaxation in spin rates of neutron stars. Under appropriate conditions, however, fermions can also form a Bose–Einstein condensate of composite bosons. Both types of behavior have recently been observed in tabletop experiments with ultra-cold fermionic atomic gases. Since the behavior is universal (i.e., independent of atomic potential) when the modulus of the scattering length greatly exceeds the separation between particles, one can expect analogous processes to occur within the supradense matter of neutron stars. In this paper, I show how neutron condensation to a Bose–Einstein condensate, in conjunction with relativistically exact expressions for fermion energy and degeneracy pressure and the relations for thermodynamic equilibrium in a spherically symmetric space–time with Schwarzschild metric, leads to stable macroscopic equilibrium states of stars of finite density, irrespective of mass.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Jorge Alfaro ◽  
Robinson Mancilla

AbstractIn this work, we present the thermodynamic study of a model that considers the black hole as a condensate of gravitons. In this model, the spacetime is not asymptotically flat because of a topological defect that introduces an angle deficit in the spacetime like in Global Monopole solutions. We have obtained a correction to the Hawking temperature plus a negative pressure associated with the black hole of mass M. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition $$\mu _{ch}=0,$$ μ ch = 0 , has well-defined thermodynamic quantities P, V, $$T_{h}$$ T h , S, and U as any other Bose–Einstein condensate (BEC). In addition, we present a formal equivalence between the Letelier spacetime and the line element that describes the graviton condensate. We also discuss the Kiselev black hole, which can parametrize the most well-known spherically symmetric black holes. Finally, we present a new metric, which we will call the BEC–Kiselev solution, that allows us to extend the graviton condensate to the case of solutions with different matter contents.


2021 ◽  
Vol 126 (3) ◽  
Author(s):  
T. Dieterle ◽  
M. Berngruber ◽  
C. Hölzl ◽  
R. Löw ◽  
K. Jachymski ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tobias Kroker ◽  
Mario Großmann ◽  
Klaus Sengstock ◽  
Markus Drescher ◽  
Philipp Wessels-Staarmann ◽  
...  

AbstractPlasma dynamics critically depends on density and temperature, thus well-controlled experimental realizations are essential benchmarks for theoretical models. The formation of an ultracold plasma can be triggered by ionizing a tunable number of atoms in a micrometer-sized volume of a 87Rb Bose-Einstein condensate (BEC) by a single femtosecond laser pulse. The large density combined with the low temperature of the BEC give rise to an initially strongly coupled plasma in a so far unexplored regime bridging ultracold neutral plasma and ionized nanoclusters. Here, we report on ultrafast cooling of electrons, trapped on orbital trajectories in the long-range Coulomb potential of the dense ionic core, with a cooling rate of 400 K ps−1. Furthermore, our experimental setup grants direct access to the electron temperature that relaxes from 5250 K to below 10 K in less than 500 ns.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


Sign in / Sign up

Export Citation Format

Share Document