scholarly journals Electronic states of zigzag graphene nanoribbons with edges reconstructed with topological defects

2015 ◽  
Vol 475 ◽  
pp. 61-65 ◽  
Author(s):  
R. Pincak ◽  
J. Smotlacha ◽  
V.A. Osipov
Nano Letters ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2876-2882
Author(s):  
Thi Thuy Nhung Nguyen ◽  
Niels de Vries ◽  
Hrag Karakachian ◽  
Markus Gruschwitz ◽  
Johannes Aprojanz ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhang ◽  
Eric P. Fahrenthold

AbstractThe spin current transmission properties of narrow zigzag graphene nanoribbons (zGNRs) have been the focus of much computational research, investigating the potential application of zGNRs in spintronic devices. Doping, fuctionalization, edge modification, and external electric fields have been studied as methods for spin current control, and the performance of zGNRs initialized in both ferromagnetic and antiferromagnetic spin states has been modeled. Recent work has shown that precise fabrication of narrow zGNRs is possible, and has addressed long debated questions on their magnetic order and stability. This work has revived interest in the application of antiferromagnetic zGNR configurations in spintronics. A general ab initio analysis of narrow antiferromagnetic zGNR performance under a combination of bias voltage and transverse electric field loading shows that their current transmission characteristics differ sharply from those of their ferromagnetic counterparts. At relatively modest field strengths, both majority and minority spin currents react strongly to the applied field. Analysis of band gaps and current transmission pathways explains the presence of negative differential resistance effects and the development of spatially periodic electron transport structures in these nanoribbons.


2009 ◽  
Vol 80 (7) ◽  
Author(s):  
R. Y. Oeiras ◽  
F. M. Araújo-Moreira ◽  
E. Z. da Silva

2014 ◽  
Vol 118 (46) ◽  
pp. 27123-27130 ◽  
Author(s):  
Heesoo Park ◽  
Jin Yong Lee ◽  
Seokmin Shin

2021 ◽  
Author(s):  
Andrii Iurov ◽  
Liubov Zhemchuzhna ◽  
Godfrey Gumbs ◽  
Danhong Huang ◽  
Paula Fekete ◽  
...  

Abstract We have calculated and investigated the electronic states, dynamical polarization function and the plasmon excitations for α − T3 nanoribbons with armchair-edge termination. The obtained plasmon dispersions are found to depend significantly on the number of atomic rows across the ribbon and the energy gap which is also determined by the nanoribbon geometry. The bandgap appears to have the strongest effect on both the plasmon dispersions and their Landau damping. We have determined the conditions when relative hopping parameter α of an α − T3 lattice has a strong effect on the plasmons which makes our material distinguished from graphene nanoribbons. Our results for the electronic and collective properties of α − T3 nanoribbons are expected to find numerous applications in the development of the next-generation electronic, nano-optical and plasmonic devices.


Sign in / Sign up

Export Citation Format

Share Document