scholarly journals The role of the water molecules in novel superconductor, Na0.35CoO2·1.3H2O

2004 ◽  
Vol 412-414 ◽  
pp. 182-186 ◽  
Author(s):  
H. Sakurai ◽  
K. Takada ◽  
F. Izumi ◽  
R.A. Dilanian ◽  
T. Sasaki ◽  
...  
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meneka Banik ◽  
Shaili Sett ◽  
Chirodeep Bakli ◽  
Arup Kumar Raychaudhuri ◽  
Suman Chakraborty ◽  
...  

AbstractSelf-assembly of Janus particles with spatial inhomogeneous properties is of fundamental importance in diverse areas of sciences and has been extensively observed as a favorably functionalized fluidic interface or in a dilute solution. Interestingly, the unique and non-trivial role of surface wettability on oriented self-assembly of Janus particles has remained largely unexplored. Here, the exclusive role of substrate wettability in directing the orientation of amphiphilic metal-polymer Bifacial spherical Janus particles, obtained by topo-selective metal deposition on colloidal Polymestyere (PS) particles, is explored by drop casting a dilute dispersion of the Janus colloids. While all particles orient with their polymeric (hydrophobic) and metallic (hydrophilic) sides facing upwards on hydrophilic and hydrophobic substrates respectively, they exhibit random orientation on a neutral substrate. The substrate wettability guided orientation of the Janus particles is captured using molecular dynamic simulation, which highlights that the arrangement of water molecules and their local densities near the substrate guide the specific orientation. Finally, it is shown that by spin coating it becomes possible to create a hexagonal close-packed array of the Janus colloids with specific orientation on differential wettability substrates. The results reported here open up new possibilities of substrate-wettability driven functional coatings of Janus particles, which has hitherto remained unexplored.


2021 ◽  
Vol 23 (5) ◽  
pp. 3467-3478
Author(s):  
J. I. Paez-Ornelas ◽  
H. N. Fernández-Escamilla ◽  
H. A. Borbón-Nuñez ◽  
H. Tiznado ◽  
Noboru Takeuchi ◽  
...  

Atomic description of ALD in systems that combine large surface area and high reactivity is key for selecting the right functional group to enhance the ligand-exchange reactions.


1977 ◽  
Vol 15 (6) ◽  
pp. 1121-1126 ◽  
Author(s):  
S. De Petris ◽  
V. Frosini ◽  
E. A. Nicol

2016 ◽  
Vol 12 (4) ◽  
pp. 240-246 ◽  
Author(s):  
Jessika Valero-González ◽  
Christina Leonhard-Melief ◽  
Erandi Lira-Navarrete ◽  
Gonzalo Jiménez-Osés ◽  
Cristina Hernández-Ruiz ◽  
...  

2019 ◽  
Vol 33 (9) ◽  
pp. 787-797 ◽  
Author(s):  
Zoltán Orgován ◽  
György G. Ferenczy ◽  
György M. Keserű

Abstract Stabilizing unique receptor conformations, allosteric modulators of G-protein coupled receptors (GPCRs) might open novel treatment options due to their new pharmacological action, their enhanced specificity and selectivity in both binding and signaling. Ligand binding occurs at intrahelical allosteric sites and involves significant induced fit effects that include conformational changes in the local protein environment and water networks. Based on the analysis of available crystal structures of metabotropic glutamate receptor 5 (mGlu5) we investigated these effects in the binding of mGlu5 receptor negative allosteric modulators. A large set of retrospective virtual screens revealed that the use of multiple protein structures and the inclusion of selected water molecules improves virtual screening performance compared to conventional docking strategies. The role of water molecules and protein flexibility in ligand binding can be taken into account efficiently by the proposed docking protocol that provided reasonable enrichment of true positives. This protocol is expected to be useful also for identifying intrahelical allosteric modulators for other GPCR targets.


Sign in / Sign up

Export Citation Format

Share Document