Relationship of dual task performance ability and balance ability in community-dwelling elderly

Physiotherapy ◽  
2015 ◽  
Vol 101 ◽  
pp. e771 ◽  
Author(s):  
S. Kobayashi ◽  
W. Nakano ◽  
Y. Suzuki ◽  
O. Urayama ◽  
N. Arita ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Maayan Agmon ◽  
Einat Kodesh ◽  
Rachel Kizony

Background. The ability to safely conduct different types of walking concurrently with a cognitive task (i.e., dual task) is crucial for daily life. The contribution of different walking types to dual-task performance has not yet been determined, nor is there agreement on the strategies that older adults use to divide their attention between two tasks (task prioritization).Objectives. To compare the effect of walking in three different directions (forward, backward, and sideways) on dual-task performance and to explore the strategies of older adults to allocate their attention in response to different motor task demands.Design. A cross-sectional study.Subjects. Thirty-two (22 female) community-dwelling older adults (aged72.7±5.7years).Methods. Subjects randomly conducted single and dual task: walking to three directions separately, cognitive tasks separately, and combination of the two.Results. Walking forward was the least demanding task, during single (FW < BW, SW) (P<.001) and dual tasks (FW < BW < SW) (P<.001). The calculation of DTC revealed the same pattern (P<.001). DTC of the cognitive tasks was not significantly different among the three walking types.Conclusions. The decline mainly in the motor performance during dual task indicates that participants prioritized the cognitive task. These findings challenge the “posture first” paradigm for task prioritization.


1989 ◽  
Vol 41 (1) ◽  
pp. 1-17 ◽  
Author(s):  
William H. Gladstones ◽  
Michael A. Regan ◽  
Robert B. Lee

Two experiments are reported in which subjects performed two forced-paced serial reaction time tasks separately and together at their maximum sustainable rates of information processing. Experiment 1 investigated the effects on the relationship between single- and dual-task performance of using tasks with the same or different input and output modality characteristics; an additional condition tested the effects on this relationship of using tasks with higher S–R compatibility. Experiment 2 investigated the effects on the relationship between single- and dual-task performance of varying information load (number of S–R alternatives). No significant differences were found in subjects’ capacities to process information in single- and dual-task conditions. This finding was unaffected by: (a) the absolute information levels of the tasks, (b) whether inputs and/or outputs involved the same or different modalities, or (c) the level of S–R compatibility. The data from both experiments provide strong support for the single-channel hypothesis.


2021 ◽  
pp. 1-12
Author(s):  
Cristina Udina ◽  
Emmeline Ayers ◽  
Marco Inzitari ◽  
Joe Verghese

Background: Motoric cognitive risk syndrome (MCR) combines slow gait and cognitive complaints and has been proposed as a predementia syndrome. The nature of dual-task performance in MCR has not been established. Objective: To assess differences in dual-task performance between participants with and without MCR and to study the prefrontal cortex (PFC)-based brain activity during dual-task using functional near-infrared spectroscopy. Methods: Cohort study of community-dwelling non-demented older adults included in the “Central Control of Mobility in Aging” study. Comprehensive assessment included global cognition and executive function tests along with clinical variables. Dual-task paradigm consisted in walking while reciting alternate letters of the alphabet (WWT) on an electronic walkway. We compared dual-task performance between MCR (n = 60) and No MCR (n = 478) participants and assessed the relationship of dual-task performance with cognitive function. In a subsample, we compared PFC oxygenation during WWT between MCR (n = 32) and No MCR (n = 293). Results: In our sample of 538 high-functioning older adults (76.6±6.5 years), with 11.2% prevalence of MCR, dual-task cost was not significantly different, compared to No MCR participants. Among MCR participants, no significant relationship was found between WWT velocity and cognitive function, whereas No MCR participants with better cognitive function showed faster WWT velocities. PFC oxygenation during WWT was higher in MCR compared to No MCR (1.02±1.25 versus 0.66±0.83, p = 0.03). Conclusion: MCR participants showed no significant differences in the dual-task cost while exhibiting higher PFC oxygenation during dual-task walking. The dual-task performance (WWT velocity) in MCR participants was not related to cognition.


Author(s):  
Hélio José Coelho-Júnior ◽  
Ivan de Oliveira Gonçalves ◽  
Ricardo Aurélio Carvalho Sampaio ◽  
Priscila Yukari Sewo Sampaio ◽  
Eduardo Lusa Cadore ◽  
...  

The present study compared the effects of traditional resistance training (TRT) and combined power training (PT) and TRT (PTRT) on cognitive parameters and serum brain-derived neurotrophic factor (BDNF) levels in non-demented, well-functioning, community-dwelling older women. Forty-five older women were randomized into one of three experimental groups: TRT, PTRT, and control group (CG). Cognitive tests explored global cognitive function, short-term memory, and dual-task performance. Serum BDNF levels were assessed at baseline and after the intervention. Exercise sessions were performed twice a week over 22 weeks. In TRT, exercise sessions were based on three sets of 8–10 repetitions at “difficult” intensity. In PTRT, the first session was based on PT (three sets of 8−10 repetitions at “moderate” intensity), while the second session was similar to the TRT. Our analyses indicated that overall cognitive function, short-term memory, and dual-task performance were similarly improved after TRT and PTRT. Serum BDNF concentrations were not altered by any training protocol. In conclusion, the two RT programs tested in the present trial improved global cognitive function, short-term memory and dual task performance in non-demented, well-functioning, community-dwelling older women. In addition, our findings suggest that mechanisms other than BDNF may be associated with such improvements.


2021 ◽  
Vol 13 ◽  
Author(s):  
Krystal M. Kirby ◽  
Sreekrishna Pillai ◽  
Robert M. Brouillette ◽  
Jeffrey N. Keller ◽  
Alyssa N. De Vito ◽  
...  

Prior research has suggested that measurements of brain functioning and performance on dual tasks (tasks which require simultaneous performance) are promising candidate predictors of fall risk among older adults. However, no prior study has investigated whether brain function measurements during dual task performance could improve prediction of fall risks and whether the type of subtasks used in the dual task paradigm affects the strength of the association between fall characteristics and dual task performance. In this study, 31 cognitively normal, community-dwelling older adults provided a self-reported fall profile (number of falls and fear of falling), completed a gait dual task (spell a word backward while walking on a GaitRite mat), and completed a supine dual task (rhythmic finger tapping with one hand while completing the AX continuous performance task (AX-CPT) with the other hand) during functional magnetic resonance imaging (fMRI). Gait performance, AX-CPT reaction time and accuracy, finger tapping cadence, and brain functioning in finger-tapping-related and AX-CPT-related brain regions all showed declines in the dual task condition compared to the single task condition. Dual-task gait, AX-CPT and finger tapping performance, and brain functioning were all independent predictors of fall profile. No particular measurement domain stood out as being the most strongly associated measure with fall variables. Fall characteristics are determined by multiple factors; brain functioning, motor task, and cognitive task performance in challenging dual-task conditions all contribute to the risk of falling.


2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Hugo Rosado ◽  
Jorge Bravo ◽  
Armando Raimundo ◽  
Joana Carvalho ◽  
José Marmeleira ◽  
...  

Abstract Background Falls in older adults are considered a major public health problem. Declines in cognitive and physical functions, as measured by parameters including reaction time, mobility, and dual-task performance, have been reported to be important risk factors for falls. The aim of this study was to investigate the effects of two multimodal programs on reaction time, mobility, and dual-task performance in community-dwelling older adults at risk of falling. Methods In this randomized controlled trial, fifty-one participants (75.4 ± 5.6 years) were allocated into two experimental groups (EGs) (with sessions 3 times per week for 24 weeks), and a control group: EG1 was enrolled in a psychomotor intervention program, EG2 was enrolled in a combined exercise program (psychomotor intervention program + whole-body vibration program), and the control group maintained their usual daily activities. The participants were assessed at baseline, after the intervention, and after a 12-week no-intervention follow-up period. Results The comparisons revealed significant improvements in mobility and dual-task performance after the intervention in EG1, while there were improvements in reaction time, mobility, and dual-task performance in EG2 (p ≤ 0.05). The size of the interventions’ clinical effect was medium in EG1 and ranged from medium to large in EG2. The comparisons also showed a reduction in the fall rate in both EGs (EG1: -44.2%; EG2: − 63.0%, p ≤ 0.05) from baseline to post-intervention. The interventions’ effects on reaction time, mobility, and dual-task performance were no longer evident after the 12-week no-intervention follow-up period. Conclusions The results suggest that multimodal psychomotor programs were well tolerated by community-dwelling older adults and were effective for fall prevention, as well as for the prevention of cognitive and physical functional decline, particularly if the programs are combined with whole-body vibration exercise. The discontinuation of these programs could lead to the fast reversal of the positive outcomes achieved. Trial registration ClinicalTrials.gov Identifier: NCT03446352. Date of registration: February 07, 2018.


Sign in / Sign up

Export Citation Format

Share Document