Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: Competition of direct exchange interaction and superexchange interaction

2015 ◽  
Vol 379 (1-2) ◽  
pp. 60-63 ◽  
Author(s):  
Xiaofang Chen ◽  
Jingshan Qi ◽  
Daning Shi
2020 ◽  
Vol 5 (11) ◽  
pp. 1496-1499
Author(s):  
Pengfei Gao ◽  
Xingxing Li ◽  
Jinlong Yang

Controlling the spin transport across two-dimensional magnetic metal–magnetic semiconductor contacts via mechanically regulating the interfacial magnetic coupling.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Seung Yong Lee ◽  
Joonho Bang ◽  
Hyun Yong Song ◽  
Byung Il Yoo ◽  
Yeongkwan Kim ◽  
...  

AbstractMagnetism of pure electrons is fundamental for understanding diverse magnetic phenomena in condensed matters but has not been fully investigated in experiments due to the lack of a tractable model system. Such an exotic material necessitates an exclusive magnetic interaction of electrons being devoid of orbital and lattice degrees of freedom. Here, we report the two-dimensional mixed-cation [YGdC]2+∙2e− electride, showing ferrimagnetic nature from the direct exchange interaction of magnetic interstitial electrons in interlayer space. We identify that magnetic interstitial electrons are periodically localized in octahedral and tetrahedral cavities between 2D cationic Y2−xGdx arrays. The mixed configuration of non-magnetic and magnetic cations in cavities induces divergent spin states and interactions of magnetic interstitial electrons, in which their direct exchange interaction overwhelms the interactions with magnetic cations, triggering the ferrimagnetic spin-alignment. This discovery facilitates further exploration of magnetic electrides and nurtures the study of two-dimensional magnetism of layered crystals and electron phases.


Doklady BGUIR ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 87-95
Author(s):  
M. S. Baranava ◽  
P. A. Praskurava

The search for fundamental physical laws which lead to stable high-temperature ferromagnetism is an urgent task. In addition to the already synthesized two-dimensional materials, there remains a wide list of possible structures, the stability of which is predicted theoretically. The article suggests the results of studying the electronic properties of MAX3 (M = Cr, Fe, A = Ge, Si, X = S, Se, Te) transition metals based compounds with nanostructured magnetism. The research was carried out using quantum mechanical simulation in specialized VASP software and calculations within the Heisenberg model. The ground magnetic states of twodimensional MAX3 and the corresponding energy band structures are determined. We found that among the systems under study, CrGeTe3 is a semiconductor nanosized ferromagnet. In addition, one is a semiconductor with a bandgap of 0.35 eV. Other materials are antiferromagnetic. The magnetic moment in MAX3 is localized on the transition metal atoms: in particular, the main one on the d-orbital of the transition metal atom (and only a small part on the p-orbital of the chalcogen). For CrGeTe3, the exchange interaction integral is calculated. The mechanisms of the formation of magnetic order was established. According to the obtained exchange interaction integrals, a strong ferromagnetic order is formed in the semiconductor plane. The distribution of the projection density of electronic states indicates hybridization between the d-orbital of the transition metal atom and the p-orbital of the chalcogen. The study revealed that the exchange interaction by the mechanism of superexchange is more probabilistic.


Nanoscale ◽  
2021 ◽  
Author(s):  
Qian Chen ◽  
Ruqian Wang ◽  
Zhaocong Huang ◽  
Shijun Yuan ◽  
Haowei Wang ◽  
...  

The magnetic semiconductor with high critical temperature has long been the focus in material science and recently is also known as one of the fundamental questions in two-dimensional (2D) materials....


2015 ◽  
Vol 51 (65) ◽  
pp. 12958-12961 ◽  
Author(s):  
Christian Wäckerlin ◽  
Fabio Donati ◽  
Aparajita Singha ◽  
Romana Baltic ◽  
Anne-Christine Uldry ◽  
...  

A record strong antiferromagnetic exchange interaction between an organic magnetic semiconductor and an insulating ferromagnetic oxide is observed.


2021 ◽  
Author(s):  
Thi Nga Do ◽  
Son-Tung Nguyen ◽  
Khang Pham

In this work, by means of the first-principles calculations, we investigate the structural and electronic properties of a two-dimensional ZnGeN2 monolayer as well as the effects of strains and electric...


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 446
Author(s):  
Mahdi Faghihnasiri ◽  
Aidin Ahmadi ◽  
Samaneh Alvankar Golpayegan ◽  
Saeideh Garosi Sharifabadi ◽  
Ali Ramazani

We utilize first principles calculations to investigate the mechanical properties and strain-dependent electronic band structure of the hexagonal phase of two dimensional (2D) HfS2. We apply three different deformation modes within −10% to 30% range of two uniaxial (D1, D2) and one biaxial (D3) strains along x, y, and x-y directions, respectively. The harmonic regions are identified in each deformation mode. The ultimate stress for D1, D2, and D3 deformations is obtained as 0.037, 0.038 and 0.044 (eV/Ang3), respectively. Additionally, the ultimate strain for D1, D2, and D3 deformation is obtained as 17.2, 17.51, and 21.17 (eV/Ang3), respectively. In the next step, we determine the second-, third-, and fourth-order elastic constants and the electronic properties of both unstrained and strained HfS2 monolayers are investigated. Our findings reveal that the unstrained HfS2 monolayer is a semiconductor with an indirect bandgap of 1.12 eV. We then tune the bandgap of HfS2 with strain engineering. Our findings reveal how to tune and control the electronic properties of HfS2 monolayer with strain engineering, and make it a potential candidate for a wide range of applications including photovoltaics, electronics and optoelectronics.


Sign in / Sign up

Export Citation Format

Share Document