Circulating endothelial cells and endothelial progenitor cells are altered in preeclampsia and placental malaria

Placenta ◽  
2021 ◽  
Vol 112 ◽  
pp. e85
Author(s):  
Dorotheah Obiri ◽  
Daniel Oduro ◽  
Isaac Joe Erskine ◽  
John Tetteh ◽  
Thomas Addison ◽  
...  
2005 ◽  
Vol 94 (12) ◽  
pp. 1270-1279 ◽  
Author(s):  
Bruno Delorme ◽  
Agnès Basire ◽  
Carla Gentile ◽  
Florence Sabatier ◽  
Frédéric Monsonis ◽  
...  

SummaryCD146 is an adhesion molecule present on endothelial cells throughout the vascular tree. CD146 is also expressed by circulating endothelial cells (CECs) widely considered to be mature endothelial cells detached from injured vessels. The discovery of circulating endothelial progenitor cells (EPCs) originating from bone marrow prompted us to investigate whether CD146 circulating cells could also contains EPCs. We tested this hypothesis using an approach combining elimination of CECs by an adhesion step, followed by immunomagnetic sorting of remaining CD146+ cells from the non adherent fraction of cord blood mononuclear cells. When cultured under endothelial-promoting conditions, these cells differentiated as late outgrowth endothelial colonies: they grew as a cobblestone monolayer, were uniformly positive for endothelial markers and did not express leukocyte antigens. They highly proliferated and were expanded in long-term culture without alterations of their phenotypic and functional properties (DiI-ac-LDL uptake, wound repair, capillary-like network formation, and TNFα response). Moreover, these cells colonized a Matrigel plug in immunodeficient mice (NOD/SCID). Finally, using 4-color flow cytometry analysis of purified CD34+ cells, we clearly discriminated, CD146+ EPCs (CD146+ CD34+ CD45+ CD133+ or CD117+), and CD146+ CECs (CD146+ CD34+, CD45− CD133− or CD117−), both in cord and adult peripheral blood. The relative proportions of the two CD146+ subsets varied in patients with myocardial infarction as compared to healthy subjects. Our study establishes that, beside CECs, CD146+ circulating cells contain a subpopulation of EPCs with potential use in proangiogenic therapy. In addition, the dual measurement of CD146+ CECs and CD146+ EPCs offers a promising tool for monitoring vascular injury/regeneration processes in clinical situations.


Author(s):  
T. Bulduk ◽  
A. U. Yalcin ◽  
O. M. Akay ◽  
S. G. Ozkurt ◽  
H. U. Teke ◽  
...  

Anemia is a common complication of chronic kidney disease (CKD). The most common cause of anemia in CKD is erythropoietin deficiency; and the most important cause of mortality in CKD patients is atherosclerotic vascular complications which are associated with endothelial damage. One of the methods evaluating vascular integrity is the cytometric measurement of circulating endothelial cells and endothelial progenitor cells in peripheral blood. The study aimed to investigate the effects of erythropoietin therapy on endothelial dysfunction by evaluating circulating endothelial cells and endothelial progenitor cells in peripheral blood using the technique of flow cytometry. Methods. A total of 55 hemodialysis patients were evaluated in three groups; those having erythropoietin therapy for at least last 3 months (n = 20) / not having erythropoietin for at least the last 3 months (n = 20) and the patients who started erythropoietin treatment during the study (n = 5). The control group consisted of 20 people. Blood values of the 3rd Group were investigated three times as baseline, 2nd week and 8th week CD34 +, CD105 + cells were evaluated as activated circulating endothelial cells; CD133 +, CD146 + cells were evaluated as activated endothelial progenitor cells. Results. There was no difference between the patients and healthy individuals in terms of circulating endothelial cells and endothelial progenitor cells. In the third group, no differences were observed in circulating endothelial cells / endothelial progenitor cell levels at baseline / 2nd and 8th weeks. There was no correlation between erythropoietin and circulating endothelial cells / endothelial progenitor cells. Conclusion. A correlation is not available between the therapeutic doses of erythropoietin used in hemodialysis patients and circulating endothelial cells / endothelial progenitor cell levels; supratherapeutic doses could change the results.


2019 ◽  
Vol 142 (2) ◽  
pp. 113-119
Author(s):  
Martin Řádek ◽  
Eva Babuňková ◽  
Martin Špaček ◽  
Tomáš Kvasnička ◽  
Jan Kvasnička

Background/Aims: Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) have been described as markers of endothelial damage and dysfunction in several diseases, including deep venous thrombosis. Their role in patients with known thrombophilia has not yet been evaluated. Both EPCs and CECs represent extremely rare cell populations. Therefore, it is essential to use standardized methods for their identification and quantification. Methods: In this study, we used multicolor flow cytometry to analyze the number of EPCs and CECs in patients with thrombophilia with or without a history of thrombosis. Patients with hematological malignancies after high-dose chemotherapy and patients with acute myocardial infarction were used as positive controls. Results: EPC and CEC immunophenotypes were determined as CD45dim/–CD34+CD146+CD133+ and CD45dim/–CD34+CD146+CD133–, respectively. Increased levels of endothelial cells were observed in positive control groups. No significant changes in the number of EPCs or CECs were detected in patients with thrombophilia compared to healthy controls. Conclusion: Our optimized multicolor flow cytometry method allows unambiguous identification and quantification of endothelial cells in the peripheral blood. Our results support previous studies showing that elevated levels of CECs could serve as an indicator of endothelial injury or dysfunction. Normal levels of CECs or EPCs were found in patients with thrombophilia.


Sign in / Sign up

Export Citation Format

Share Document