Overexpression of the Selaginella lepidophylla bHLH transcription factor enhances water-use efficiency, growth, and development in Arabidopsis

Plant Science ◽  
2021 ◽  
pp. 111129
Author(s):  
Madhavi A. Ariyarathne ◽  
Bernard W.M. Wone
2010 ◽  
Vol 22 (12) ◽  
pp. 4128-4141 ◽  
Author(s):  
Chan Yul Yoo ◽  
Heather E. Pence ◽  
Jing Bo Jin ◽  
Kenji Miura ◽  
Michael J. Gosney ◽  
...  

2017 ◽  
Author(s):  
Xiao-Yu Guo ◽  
Yao Wang ◽  
Ping Xu ◽  
Guo-Hua Yu ◽  
Li-Yong Zhang ◽  
...  

AbstractImprovement of crop drought resistance and water use efficiency (WUE) has been a major endeavor in agriculture. ERECTA is the first identified major effector of water use efficiency. However, the underlying molecular mechanism is not well understood. Here, we report a genetic pathway, composed of EDT1/HDG11, ERECTA, and E2Fa loci, which regulates water use efficiency by modulating stomatal density. The HD-START transcription factor EDT1/HDG11 transcriptionally activates ERECTA expression by binding to an HD cis-element in the ERECTA promoter. ERECTA in turn relies on E2Fa to control the expression of cell-cycle related genes and the transition from mitosis to endocycle, which leads to increased nuclear DNA content in leaf cells, and therefore increased cell size and decreased stomatal density. The decreased stomatal density improves plant WUE. Our study demonstrates the EDT1/HDG11-ERECTA-E2Fa genetic pathway that reduces stomatal density by increasing cell size, providing a new avenue to improve WUE of crops.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32925 ◽  
Author(s):  
Hua Weng ◽  
Chan Yul Yoo ◽  
Michael J. Gosney ◽  
Paul M. Hasegawa ◽  
Michael V. Mickelbart

2021 ◽  
Vol 25 (02) ◽  
pp. 427-435
Author(s):  
Jingyu Zhang

This study was conducted with an objective to determine the optimal negative pressure irrigation suitable for growth and development of eggplant. The total water consumption, yield, growth and development, physiological activity, and quality of eggplant were tested using a pot experiment in a greenhouse with four treatments, namely -3, -8, -15 kPa and normal irrigation (C). The negative pressure was maintained using a stable negative pressure irrigation device. The total water consumption of eggplant was decreased by 20.51–70.00%, the total water consumption intensity was decreased by 22.18–70.27%, and the water use efficiency was increased by up to 7.45–41.48% under negative pressure irrigation compared with control (C). When the irrigation pressure was controlled at -3 kPa, the nitrate reductase activity, root activity, and chlorophyll content were increased by 6.14–15.5%, 11.11–33.33% and 20.04–51.58%, respectively. The yield of eggplant was also increased by 12.43% compared with control. The soluble sugars, soluble protein, and vitamin C contents of eggplant fruits at different maturation stages were increased by 14.47–47.22%, 16.33–58.78%, and 19.64–43.42% at -3 kPa, respectively, compared with the control. Taken together, it was observed that stable negative pressure irrigation in the range of -3 to -15 kPa obviously reduced water consumption of eggplant, and had a water saving effect. Negative pressure irrigation (-3 kPa) improved the water use efficiency, physiological activity, growth and development, and yield and quality of eggplant. © 2021 Friends Science Publishers


2017 ◽  
Vol 50 (2) ◽  
pp. 21-34 ◽  
Author(s):  
F.B. Anjorin ◽  
S.A. Adejumo ◽  
K.S. Are ◽  
D. J. Ogunniyan

AbstractWater stress is one of the major abiotic factors affecting crop growth and development at every growth stages. Effects of water deficit on the vegetative growth stage of four maize varieties consisting of two Quality Protein Maize varieties (ILE1OB and ART98SW6OB) and two drought tolerant checks (TZPBSR and DTESTRSYN) were evaluated under the screen house conditions at the Institute of Agricultural Research and Training (I.A.R & T), Moor Plantation, Ibadan. Maize seeds were sown in 20 L plastic pots filled with 15 kg top soil, which were subjected to four watering regimes of 25, 50, 75 and 100% field capacities (FC). The experimental design was a 4 × 4 factorial fitted into CRD with four replications. Data were collected on days to germination, number of leaves per plant, leaf area, plant height, stem diameter, leaf extension rate, biomass yield and water use efficiency. The result showed that days to germination were prolonged as the moisture availability decreases, while water use efficiency increased as the moisture level reduced. Reduction in moisture availability caused significant reduction in the other evaluated parameters. At 25% FC DTESTRSYN was superior in leaf area, number of leaves per plant, days to germination and water use efficiency, TZPBSR had highest values for stem diameter and biomass yield, while ILE1OB was superior in plant height, stem diameter, leaf and stem extension rate. ILE1OB competes favourably with the drought tolerant checks and performed better than ART98SW6OB. Adequate moisture condition is fundamental for normal growth and development in maize crops.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 263B-263
Author(s):  
Daniel Warnock ◽  
William Randle ◽  
Mark Rieger

Photosynthesis is the very essence of agriculture. Previous photosynthetic and transpirational studies of onion (Allium cepa) have been limited to specific developmental stages. Our study measured photosynthesis and transpiration in sixteen plants of a single short-day cultivar over an eleven week period containing both non- and bulb inductive photoperiods. Differences in weekly means for photosynthesis, leaf conductance, water use efficiency, and intercellular CO, were highly significant. Weekly photosynthetic means increased under a non-inductive photoperiod and peaked one week after initiating a bulb inducing photoperiod. A decrease and leveling period occurred as bulbs developed followed by a decrease as foliage lodged. Weekly photosynthetic and leaf conductance means were correlated and highly significant. Water use efficiency and intercellular CO, means remained fairly constant throughout the study suggesting that photosynthesis in unstressed onions was controlled by internal mechanisms instead of stomata.


2013 ◽  
Vol 64 (14) ◽  
pp. 4589-4601 ◽  
Author(s):  
Xiao Han ◽  
Sha Tang ◽  
Yi An ◽  
Dong-Chao Zheng ◽  
Xin-Li Xia ◽  
...  

2018 ◽  
Vol 130 ◽  
pp. 54-60 ◽  
Author(s):  
Jesús L. Romero-Romero ◽  
Claudio Inostroza-Blancheteau ◽  
Daniela Orellana ◽  
Felipe Aquea ◽  
Marjorie Reyes-Díaz ◽  
...  

2011 ◽  
Vol 6 (7) ◽  
pp. 1069-1071 ◽  
Author(s):  
Chan Yul Yoo ◽  
Paul M. Hasegawa ◽  
Michael V. Mickelbart

Sign in / Sign up

Export Citation Format

Share Document