Weisiensin B inhibits primary and lateral root development by interfering with polar auxin transport in Arabidopsis thaliana

2019 ◽  
Vol 139 ◽  
pp. 738-745
Author(s):  
Peng Li ◽  
Lan Ding ◽  
Li Zhang ◽  
Jing He ◽  
Zhaowei Huan
2021 ◽  
Author(s):  
Yang Gang ◽  
Chen Bi-xia ◽  
Chen Tao ◽  
Chen Jia-hui ◽  
Sun Rui ◽  
...  

Auxin and auxin-mediated signaling pathways involved in the regulation of lateral root development are well documented. Although exocytic vesicle trafficking plays an important role in PIN-auxin-efflux carrier recycling, and polar auxin transport during lateral root formation, however, the mechanistic details of these processes are not well understood. Here, we demonstrate an essential regulatory mechanism of B1L that interacts with the exocyst to regulate PIN-mediated polar auxin transport and lateral root initiation. B1L is highly expressed in Arabidopsis roots, and genetic and cellular analyses have revealed that B1L is mainly involved in lateral root primordia initiation. Furthermore, DR5::GUS expression analyses revealed that auxin levels were higher in lateral root primordia of the b1l mutant than in the wild-type. Exogenous auxin treatment confirmed that the lateral root phenotype correlated closely with auxin levels. Additionally, auxin transport-inhibitory treatment indicated that B1L regulates auxin efflux. Consistently, b1l mutants exhibited higher levels of auxin efflux carriers PIN1-GFP and PIN3-GFP in lateral root primordia. Moreover, B1L interacts with the exocyst and functions in recycling PIN2-GFP. Finally, the b1l-1/exo70b1-1 double-mutant exhibited a significant increase in the number of lateral roots compared to the wildtype, b1l-1, and exo70b1-1. Collectively, this study improves our understanding of the highly sophisticated processes involved in exocytic vesicular trafficking-mediated polar auxin transport and lateral root initiation in plants.


2020 ◽  
Vol 227 (4) ◽  
pp. 1157-1173 ◽  
Author(s):  
Qingqing Xun ◽  
Yunzhe Wu ◽  
Hui Li ◽  
Jinke Chang ◽  
Yang Ou ◽  
...  

2012 ◽  
Vol 368 (1-2) ◽  
pp. 591-602 ◽  
Author(s):  
Mauricio Nahuam Chávez-Avilés ◽  
Claudia Lizeth Andrade-Pérez ◽  
Homero Reyes de la Cruz

Plant Science ◽  
2007 ◽  
Vol 173 (4) ◽  
pp. 417-425 ◽  
Author(s):  
Juan Bao ◽  
Fanjun Chen ◽  
Riliang Gu ◽  
Guoying Wang ◽  
Fusuo Zhang ◽  
...  

2020 ◽  
pp. jbc.RA120.014543
Author(s):  
Jordan M. Chapman ◽  
Gloria K. Muday

Flavonoids are a class of specialized metabolites with subclasses including flavonols and anthocyanins, which have unique properties as antioxidants. Flavonoids modulate plant development, but whether and how they impact lateral root development is unclear. We examined potential roles for flavonols in this process using Arabidopsis thaliana mutants with defects in genes encoding key enzymes in flavonoid biosynthesis. We observed the tt4 and fls1 mutants, which produce no flavonols, have increased lateral root emergence. The tt4 root phenotype was reversed by genetic and chemical complementation. To more specifically define the flavonoids involved, we tested an array of flavonoid biosynthetic mutants, eliminating roles for anthocyanins and the flavonols quercetin and isorhamnetin in modulating root development. Instead, two tt7 mutant alleles, with defects in a branchpoint enzyme blocking quercetin biosynthesis, formed reduced numbers of lateral roots, and tt7-2 had elevated levels of kaempferol. Using a flavonol-specific dye, we observed that in the tt7-2 mutant, kaempferol accumulated within lateral root primordia at higher levels than wild-type. These data are consistent with kaempferol, or downstream derivatives, acting as a negative regulator of lateral root emergence. We examined ROS accumulation using ROS-responsive probes and found reduced fluorescence of a superoxide-selective probe within the primordia of tt7-2 compared to wild type, but not in the tt4 mutant, consistent with opposite effects of these mutants on lateral root emergence. These results support a model in which increased level of kaempferol in the lateral root primordia of tt7-2 reduces superoxide concentration and ROS-stimulated lateral root emergence.


Sign in / Sign up

Export Citation Format

Share Document