transport mutants
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 1)

H-INDEX

26
(FIVE YEARS 0)

Yeast ◽  
2021 ◽  
Author(s):  
Michelle E. Walker ◽  
Jin Zhang ◽  
Krista M. Sumby ◽  
Andrea Lee ◽  
Anne Houlès ◽  
...  


2019 ◽  
Vol 32 (7) ◽  
pp. 828-840 ◽  
Author(s):  
Vijay Shankar Singh ◽  
Prajna Tripathi ◽  
Parul Pandey ◽  
Durgesh Narain Singh ◽  
Basant Kumar Dubey ◽  
...  

Azospirillum brasilense is a plant growth–promoting bacterium that colonizes the roots of a large number of plants, including C3 and C4 grasses. Malate has been used as a preferred source of carbon for the enrichment and isolation Azospirillum spp., but the genes involved in their transport and utilization are not yet characterized. In this study, we investigated the role of the two types of dicarboxylate transporters (DctP and DctA) of A. brasilense in their ability to colonize and promote growth of the roots of a C4 grass. We found that DctP protein was distinctly upregulated in A. brasilense grown with malate as sole carbon source. Inactivation of dctP in A. brasilense led to a drastic reduction in its ability to grow on dicarboxylates and form cell aggregates. Inactivation of dctA, however, showed a marginal reduction in growth and flocculation. The growth and nitrogen fixation of a dctP and dctA double mutant of A. brasilense were severely compromised. We have shown here that DctPQM and DctA transporters play a major and a minor role in the transport of C4-dicarboxylates in A. brasilense, respectively. Studies on inoculation of the seedlings of a C4 grass, Eleusine corcana, with A. brasilense and its dicarboxylate transport mutants revealed that dicarboxylate transporters are required by A. brasilense for an efficient colonization of plant roots and their growth.



eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Matthias Siebert ◽  
Mathias A Böhme ◽  
Jan H Driller ◽  
Husam Babikir ◽  
Malou M Mampell ◽  
...  

Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.



Microbiology ◽  
2015 ◽  
Vol 161 (6) ◽  
pp. 1260-1270 ◽  
Author(s):  
Samuel Gelis ◽  
Rito Herrera ◽  
Jesús Jorrín ◽  
José Ramos ◽  
Raquel González-Fernández


2015 ◽  
Vol 26 (2) ◽  
pp. 350-358 ◽  
Author(s):  
Nicole L. Umberger ◽  
Tamara Caspary ◽  
Monica Bettencourt-Dias

Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-AktT308 and P-AktS473, and previous work showed decreased P-AktS473 in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-AktT308 and P-AktS473 in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-AktT308. Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-AktS473 or P-AktT308 upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA–dependent phosphorylation of AktS473 and AktT308 in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.



Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1612-1619 ◽  
Author(s):  
Mauld Lamarque ◽  
Dominique Aubel ◽  
Jean-Christophe Piard ◽  
Christophe Gilbert ◽  
Vincent Juillard ◽  
...  

Lactococcus lactis is known to take up extracellular peptides via at least three distinct peptide transporters. The well-described oligopeptide transporter Opp alone is able to ensure the growth of L. lactis in milk, while the di- and tripeptide transporter DtpT is involved in a peptide-dependent signalling mechanism. The oligopeptide Opt transporter displays two peptide-binding proteins, OptA and OptS. We previously demonstrated that OptA-dependent transport is dedicated to nutritional peptides, as an optABCDF mutant (of a strain devoid of Opp) has an impaired capacity to grow in milk. Using isogenic peptide transport mutants, this study shows that biosynthesis of the Opt transporter is much less sensitive to downregulation that is dependent on extracellular peptides taken up by DtpT than is Opp biosynthesis; this peptide-dependent regulation relies on the transcriptional repressor CodY. We demonstrate the dual function of the Opt system; while OptA contributes to the bacterial nutrition during growth in milk, OptS is involved in the transport of signalling peptides derived from milk and controlling opp expression. So, these results shed new light on the peptide-dependent regulation relying on two peptide transporters with different specificities: DtpT and Opt (via OptS).



2010 ◽  
Vol 432 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Clara Bermejo ◽  
Farzad Haerizadeh ◽  
Hitomi Takanaga ◽  
Diane Chermak ◽  
Wolf B. Frommer

Precise and dynamic measurement of intracellular metabolite levels has been hampered by difficulties in differentiating between adsorbed and imported fractions and the subcellular distribution between cytosol, endomembrane compartments and mitochondria. In the present study, genetically encoded FRET (Förster resonance energy transfer)-based sensors were deployed for dynamic measurements of free cytosolic glucose and ATP with varying external supply and in glucose-transport mutants. Moreover, by using the FRET sensors in a microfluidic platform, we were able to monitor in vivo changes of intracellular free glucose in individual yeast cells. We demonstrate the suitability of the FRET sensors for gaining physiological insight by demonstrating that free intracellular glucose and ATP levels are reduced in a hxt5Δ hexose-transporter mutant compared with wild-type and other hxtΔ strains.



2010 ◽  
Vol 78 (5) ◽  
pp. 2045-2052 ◽  
Author(s):  
Jacqueline D. Fetherston ◽  
Olga Kirillina ◽  
Alexander G. Bobrov ◽  
James T. Paulley ◽  
Robert D. Perry

ABSTRACT Iron acquisition from the host is an important step in the pathogenic process. While Yersinia pestis has multiple iron transporters, the yersiniabactin (Ybt) siderophore-dependent system plays a major role in iron acquisition in vitro and in vivo. In this study, we determined that the Ybt system is required for the use of iron bound by transferrin and lactoferrin and examined the importance of the Ybt system for virulence in mouse models of bubonic and pneumonic plague. Y. pestis mutants unable to either transport Ybt or synthesize the siderophore were both essentially avirulent via subcutaneous injection (bubonic plague model). Surprisingly, via intranasal instillation (pneumonic plague model), we saw a difference in the virulence of Ybt biosynthetic and transport mutants. Ybt biosynthetic mutants displayed an ∼24-fold-higher 50% lethal dose (LD50) than transport mutants. In contrast, under iron-restricted conditions in vitro, a Ybt transport mutant had a more severe growth defect than the Ybt biosynthetic mutant. Finally, a Δpgm mutant had a greater loss of virulence than the Ybt biosynthetic mutant, indicating that the 102-kb pgm locus encodes a virulence factor, in addition to Ybt, that plays a role in the pathogenesis of pneumonic plague.



Genetics ◽  
2009 ◽  
Vol 183 (3) ◽  
pp. 885-896 ◽  
Author(s):  
Carlo Iomini ◽  
Linya Li ◽  
Jessica M. Esparza ◽  
Susan K. Dutcher

The intraflagellar transport machinery is required for the assembly of cilia. It has been investigated by biochemical, genetic, and computational methods that have identified at least 21 proteins that assemble into two subcomplexes. It has been hypothesized that complex A is required for retrograde transport. Temperature-sensitive mutations in FLA15 and FLA17 show defects in retrograde intraflagellar transport (IFT) in Chlamydomonas. We show that IFT144 and IFT139, two complex A proteins, are encoded by FLA15 and FLA17, respectively. The fla15 allele is a missense mutation in a conserved cysteine and the fla17 allele is an in-frame deletion of three exons. The flagellar assembly defect of each mutant is rescued by the respective transgenes. In fla15 and fla17 mutants, bulges form in the distal one-third of the flagella at the permissive temperature and this phenotype is also rescued by the transgenes. These bulges contain the complex B component IFT74/72, but not α-tubulin or p28, a component of an inner dynein arm, which suggests specificity with respect to the proteins that accumulate in these bulges. IFT144 and IFT139 are likely to interact with each other and other proteins on the basis of three distinct genetic tests: (1) Double mutants display synthetic flagellar assembly defects at the permissive temperature, (2) heterozygous diploid strains exhibit second-site noncomplemention, and (3) transgenes confer two-copy suppression. Since these tests show different levels of phenotypic sensitivity, we propose they illustrate different gradations of gene interaction between complex A proteins themselves and with a complex B protein (IFT172).



2009 ◽  
Vol 238 (7) ◽  
pp. 1744-1759 ◽  
Author(s):  
Shannon C. Lunt ◽  
Tony Haynes ◽  
Brian D. Perkins


Sign in / Sign up

Export Citation Format

Share Document