scholarly journals Genetic diversity and population structure of Camellia huana (Theaceae), a limestone species with narrow geographic range, based on chloroplast DNA sequence and microsatellite markers

2020 ◽  
Vol 42 (5) ◽  
pp. 343-350
Author(s):  
Shuang Li ◽  
Shang-Li Liu ◽  
Si-Yu Pei ◽  
Man-Man Ning ◽  
Shao-Qing Tang
Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 338 ◽  
Author(s):  
Xue Zhang ◽  
Yuan-Huan Liu ◽  
Yue-Hua Wang ◽  
Shi-Kang Shen

Genetic diversity is vital to the sustainable utilization and conservation of plant species. Rhododendron rex subsp. rex Lévl. is an endangered species endemic to the southwest of China. Although the natural populations of this species are facing continuous decline due to the high frequency of anthropogenic disturbance, the genetic information of R. rex subsp. rex is not yet elucidated. In the present study, 10 pairs of microsatellite markers (nSSRs) and three pairs of chloroplast DNA (cpDNAs) were used in the elucidation of the genetic diversity, population structure, and demographic history of 11 R. rex subsp. rex populations. A total of 236 alleles and 12 haplotypes were found. A moderate genetic diversity within populations (HE = 0.540 for nSSRs, Hd = 0.788 for cpDNA markers), high historical and low contemporary gene flows, and moderate genetic differentiation (nSSR: FST = 0.165***; cpDNA: FST = 0.841***) were detected among the R. rex subsp. rex populations. Genetic and geographic distances showed significant correlation (p < 0.05) determined by the Mantel test. The species exhibited a conspicuous phylogeographical structure among the populations. Using the Bayesian skyline plot and species distribution models, we found that R. rex subsp. rex underwent a population demography contraction approximately 50,000–100,000 years ago. However, the species did not experience a recent population expansion event. Thus, habitat loss and destruction, which result in a population decline and species inbreeding depression, should be considered in the management and conservation of R. rex subsp. rex.


Author(s):  
Workia Ahmed ◽  
Tileye Feyissa ◽  
Kassahun Tesfaye ◽  
Sumaira Farrakh

Abstract Background Date palm tree (Phoenix dactylifera L.) is a perennial monocotyledonous plant belonging to the Arecaceae family, a special plant with extraordinary nature that gives eminent contributions in agricultural sustainability and huge socio-economic value in many countries of the world including Ethiopia. Evaluation of genetic diversity across date palms at DNA level is very important for breeding and conservation. The result of this study could help to design for genetic improvement and develop germplasm introduction programmes of date palms mainly in Ethiopia. Results In this study, 124 date palm genotypes were collected, and 10 polymorphic microsatellite markers were used. Among 10 microsatellites, MPdCIR085 and MPdCIR093 loci showed the highest value of observed and expected heterozygosity, maximum number of alleles, and highest polymorphic information content values. A total of 112 number of alleles were found, and the mean number of major allele frequency was 0.26, with numbers ranging from 0.155 (MPdCIR085) to 0.374 (MPdCIR016); effective number of alleles with a mean value of 6.61, private alleles ranged from 0.0 to 0.65; observed heterozygosity ranged from 0.355 to 0.726; expected heterozygosity varied from 0.669 to 0.906, polymorphic information content with a mean value of 0.809; fixation index individuals relative to subpopulations ranged from 0.028 for locus MPdCIR032 to 0.548 for locus MPdCIR025, while subpopulations relative to total population value ranged from − 0.007 (MPdCIR070) to 0.891 (MPdCIR015). All nine accesstions, neighbour-joining clustering analysis, based on dissimilarity coefficient values were grouped into five major categories; in population STRUCTURE analysis at highest K value, three groups were formed, whereas DAPC separated date palm genotypes into eight clusters using the first two linear discriminants. Principal coordinate analysis was explained, with a 17.33% total of variation in all populations. Generally, the result of this study revealed the presence of allele variations and high heterozygosity (> 0.7) in date palm genotypes. Conclusions Microsatellites (SSR) are one of the most preferable molecular markers for the study of genetic diversity and population structure of plants. In this study, we found the presence of genetic variations of date palm genotypes in Ethiopia; therefore, these genetic variations of date palms is important for crop improvement and conservation programmes; also, it will be used as sources of information to national and international genbanks.


2020 ◽  
Vol 27 (7) ◽  
pp. 1699-1709
Author(s):  
Rekha Sharma ◽  
Sonika Ahlawat ◽  
Himani Sharma ◽  
Ved Prakash ◽  
Shilpa ◽  
...  

2017 ◽  
Vol 71 ◽  
pp. 87-96 ◽  
Author(s):  
Muhammad Amjad Nawaz ◽  
Seung Hwan Yang ◽  
Hafiz Mamoon Rehman ◽  
Faheem Shehzad Baloch ◽  
Jeong Dong Lee ◽  
...  

2009 ◽  
Vol 54 (No. 10) ◽  
pp. 468-474 ◽  
Author(s):  
S. Kusza ◽  
E. Gyarmathy ◽  
J. Dubravska ◽  
I. Nagy ◽  
A. Jávor ◽  
...  

In this study genetic diversity, population structure and genetic relationships of Tsigai populations in Slovakia were investigated using microsatellite markers. Altogether 195 animals from 12 populations were genotyped for 16 microsatellites. 212 alleles were detected on the loci. The number of identified alleles per locus ranged from 11 to 35. In the majority of the populations heterozygosity deficiency and potential risks of inbreeding could be determined. High values of <I>F</I><sub>ST</sub> (0.133) across all the loci revealed a substantial degree of population differentiation. The estimation of genetic distance value showed that the Slovak Vojin population was the most different from the other populations. The 12 examined populations were able to group into 4 clusters. With this result our aim is to help the Slovak sheep breeders to establish their own mating system, to avoid genetic loss and to prevent diversity of Tsigai breed in Slovakia.


2020 ◽  
Vol 141 ◽  
pp. 103413
Author(s):  
Tilahun Mekonnen ◽  
Teklehaimanot Haileselassie ◽  
Stephen B. Goodwin ◽  
Kassahun Tesfayea

Sign in / Sign up

Export Citation Format

Share Document